Proximal promoter region of the wheat histone H3 gene confers S phase-specific gene expression in transformed rice cells

1993 ◽  
Vol 23 (3) ◽  
pp. 553-565 ◽  
Author(s):  
Norihiro Ohtsubo ◽  
Takuya Nakayama ◽  
Rie Terada ◽  
Ko Shimamoto ◽  
Masaki Iwabuchi
2004 ◽  
Vol 287 (3) ◽  
pp. F460-F468 ◽  
Author(s):  
Christie P. Thomas ◽  
Randy W. Loftus ◽  
Kang Z. Liu

VIT32, a vasopressin-induced transcript, inhibits Na+ transport when coexpressed with the epithelial sodium channel in Xenopus laevis oocytes ( EMBO J 21: 5109–5117, 2002). To understand the mechanism of VIT32 gene regulation, we examined the effect of DDAVP and cAMP stimulation on VIT32 expression in M-1 mouse collecting duct cells and in H441 human airway epithelial cells. Elevation of cAMP with forskolin and IBMX increased VIT32 gene expression with a peak effect at 2 h. The increase in gene expression was abolished by H89 and by actinomycin D, suggesting that cAMP stimulates VIT32 mRNA expression by a PKA-mediated increase in gene transcription. An ∼1.5-kb fragment of the 5′-flanking region of VIT32 was cloned and was able to confer cAMP-stimulated reporter gene activity when transfected into M-1 and H441 cells. By deletion analysis and site-directed mutagenesis, a cAMP response element (CRE) was identified within the proximal promoter region that was sufficient to account for the increase in VIT32 gene expression seen with DDAVP and elevation of cAMP. Furthermore, DDAVP-stimulated VIT32 promoter-reporter activity was inhibited by H89 and by a dominant negative CREB construct. Finally, we were able to identify CREB as a nuclear protein that bound to the VIT32 CRE in gel mobility shift assays. In summary, DDAVP stimulates transcription of VIT32 via a CRE within the proximal promoter region of the VIT32 gene.


1998 ◽  
Vol 330 (1) ◽  
pp. 335-343 ◽  
Author(s):  
M. Bahaa FADEL ◽  
C. Stephane BOUTET ◽  
Thomas QUERTERMOUS

To investigate the molecular basis of endothelial cell-specific gene expression, we have examined the DNA sequences and the cognate DNA-binding proteins that mediate transcription of the murine tie2/tek gene. Reporter transfection experiments conformed with earlier findings in transgenic mice, indicating that the upstream promoter of Tie2/Tek is capable of activating transcription in an endothelial cell-specific fashion. These experiments have also allowed the identification of a single upstream inhibitory region (region I) and two positive regulatory regions (regions U and A) in the proximal promoter. Electrophoretic mobility-shift assays have allowed further characterization of three novel DNA-binding sequences associated with these regions and have provided preliminary characterization of the protein factors binding to these elements. Two of the elements (U and A) confer increased transcription on a heterologous promoter, with element U functioning in an endothelial-cell-selective manner. By employing embryonic endothelial-like yolk sac cells in parallel with adult-derived endothelial cells, we have identified differences in functional activity and protein binding that may reflect mechanisms for specifying developmental regulation of tie2/tek expression. Further study of the DNA and protein elements characterized in these experiments is likely to provide new insight into the molecular basis of developmental- and cell-specific gene expression in the endothelium.


2011 ◽  
Vol 286 (45) ◽  
pp. 39457-39465 ◽  
Author(s):  
Laurie A. Steiner ◽  
Vincent P. Schulz ◽  
Yelena Maksimova ◽  
Clara Wong ◽  
Patrick G. Gallagher

1999 ◽  
Vol 189 (10) ◽  
pp. 1669-1678 ◽  
Author(s):  
Boris Reizis ◽  
Philip Leder

The pre-T cell receptor α (pTα) protein is a critical component of the pre-T cell receptor complex in early thymocytes. The expression of the pTα gene is one of the earliest markers of the T cell lineage and occurs exclusively in pre-T cells. To investigate the molecular basis of thymocyte-specific gene expression, we searched for the genomic elements regulating transcription of the mouse pTα gene. We now report that expression of the pTα gene is primarily controlled by an upstream genomic region, which can drive thymocyte-specific expression of a marker gene in transgenic mice. Within this region, we have identified two specific DNase-hypersensitive sites corresponding to a proximal promoter and an upstream transcriptional enhancer. The pTα enhancer appears to function preferentially in pre-T cell lines and binds multiple nuclear factors, including YY1. The enhancer also contains two G-rich stretches homologous to a critical region of the thymocyte-specific lck proximal promoter. Here we show that these sites bind a common nuclear factor and identify it as the zinc finger protein ZBP-89. Our data establish a novel experimental model for thymocyte-specific gene expression and suggest an important role for ZBP-89 in T cell development.


1993 ◽  
Vol 13 (7) ◽  
pp. 4400-4408
Author(s):  
T Kikuchi ◽  
K Raju ◽  
M L Breitman ◽  
T Shinohara

Regulatory sequences and nuclear factors governing tissue-restricted expression of the mouse arrestin gene were investigated. The results showed that while proximal promoter sequence positions -38 to +304 are sufficient to direct low levels of retina-specific gene expression, sequences extending upstream to position -209 support higher levels of expression in the retina, as well as detectable expression in the lens, pineal gland, and brain. Within the interval between positions -209 and -38, a broadly expressed nuclear factor, Bd, binds to sequences centered between positions -205 and -185, a region which contains two direct repeats of the hexamer, TGACCT. The proximal promoter binds three apparently retina-specific nuclear factors, Bp1, Bp2, and Bp3, through overlapping sequences centered between positions -25 and -15. Bp1 and Bp3 also recognize a closely related sequence found in the promoter regions of several other vertebrate photoreceptor-specific genes. Moreover, the consensus binding site for Bp1, designated PCE I, is identical to RCS I, an element known to play a critical role eliciting photoreceptor-specific gene expression in Drosophila melanogaster. The results suggest that PCE I and RCS I are functionally as well as structurally similar and that, despite marked differences in the fly and vertebrate visual systems, the transcriptional machinery involved in photoreceptor-specific gene expression has been strongly evolutionarily conserved.


2010 ◽  
Vol 91 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Xue Cai ◽  
Shannon M. Conley ◽  
Tong Cheng ◽  
Muayyad R. Al-Ubaidi ◽  
Muna I. Naash

Sign in / Sign up

Export Citation Format

Share Document