Boundary effects at a notch tip in anti-plane shear

1988 ◽  
Vol 38 (1) ◽  
pp. 15-24
Author(s):  
Emanuel Ore ◽  
David Durban
2017 ◽  
Vol 53 (1) ◽  
pp. 15-25 ◽  
Author(s):  
A.R. Torabi ◽  
Behnam Saboori

Brittle fracture of components made of the general-purpose polystyrene and weakened by an edge U-notch under combined tension/out-of-plane shear loading conditions (mixed mode I/III) has not been studied yet experimentally or theoretically. In this research, a recently developed loading fixture is employed for experimentally investigating the fracture of U-notched general-purpose polystyrene samples with various notch tip radii of 0.5, 1, 2 and 4 mm when they are subjected to different combinations of tension/out-of-plane shear. The samples are fabricated with four different notch tip radii with the purpose of assessing the influence of this geometrical parameter. The experimental values of fracture load and out-of-plane fracture angle are theoretically predicted by the two stress-based criteria of point stress and mean stress lately extended to general loading case of mixed mode I/II/III. It is shown that both the point stress and mean stress criteria provide acceptable predictions to fracture behavior of U-notched general-purpose polystyrene specimens. The critical distances needed for the point stress and mean stress criteria are determined based on the experimental results of the U-notched samples tested under pure mode I loading. No meaningful difference is found between the fracture loads and fracture initiation angles predicted by the point stress and mean stress criteria. It is also observed that as the mode III contribution in the applied mixed mode I/III loading increases, a larger total external load is needed for the fracture of U-notched general-purpose polystyrene specimens to occur.


2021 ◽  
Vol 42 (12) ◽  
pp. 1-18
Author(s):  
LI chong ◽  
◽  
◽  
HU bin ◽  
NIU zhongrong ◽  
...  

2005 ◽  
Vol 127 (4) ◽  
pp. 709-715 ◽  
Author(s):  
Wei Sun ◽  
Michael S. Sacks ◽  
Michael J. Scott

Evaluation and simulation of the multiaxial mechanical behavior of native and engineered soft tissues is becoming more prevalent. In spite of this growing use, testing methods have not been standardized and methodologies vary widely. The strong influence of boundary conditions were recently underscored by Waldman et al. [2002, J. Materials Science: Materials in Medicine 13, pp. 933–938] wherein substantially different experimental results were obtained using different sample gripping methods on the same specimens. As it is not possible to experimentally evaluate the effects of different biaxial test boundary conditions on specimen internal stress distributions, we conducted numerical simulations to explore these effects. A nonlinear Fung-elastic constitutive model (Sun et al., 2003, JBME 125, pp. 372–380, which fully incorporated the effects of in-plane shear, was used to simulate soft tissue mechanical behavior. Effects of boundary conditions, including varying the number of suture attachments, different gripping methods, specimen shapes, and material axes orientations were examined. Results demonstrated strong boundary effects with the clamped methods, while suture attachment methods demonstrated minimal boundary effects. Suture-based methods appeared to be best suited for biaxial mechanical tests of biological materials. Moreover, the simulations demonstrated that Saint-Venant’s effects depended significantly on the material axes orientation. While not exhaustive, these comprehensive simulations provide experimentalists with additional insight into the stress–strain fields associated with different biaxial testing boundary conditions, and may be used as a rational basis for the design of biaxial testing experiments.


1993 ◽  
Author(s):  
Sandra L. Schneider ◽  
John F. Van Steenburgh ◽  
Morey Wong
Keyword(s):  

2018 ◽  
Vol 12 (2) ◽  
pp. 142
Author(s):  
Reza Samadi ◽  
Francois Robitaille
Keyword(s):  

1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


Sign in / Sign up

Export Citation Format

Share Document