A three-dimensional parabolic punch problem in linear elasticity

1990 ◽  
Vol 24 (4) ◽  
pp. 369-383 ◽  
Author(s):  
A. Darai ◽  
F. M. Arscott
1996 ◽  
Vol 63 (2) ◽  
pp. 278-286 ◽  
Author(s):  
A. Nagarajan ◽  
S. Mukherjee ◽  
E. Lutz

This paper presents a novel variant of the boundary element method, here called the boundary contour method, applied to three-dimensional problems of linear elasticity. In this work, the surface integrals on boundary elements of the usual boundary element method are transformed, through an application of Stokes’ theorem, into line integrals on the bounding contours of these elements. Thus, in this formulation, only line integrals have to be numerically evaluated for three-dimensional elasticity problems—even for curved surface elements of arbitrary shape. Numerical results are presented for some three-dimensional problems, and these are compared against analytical solutions.


1994 ◽  
Vol 61 (2) ◽  
pp. 264-269 ◽  
Author(s):  
A. Nagarajan ◽  
E. Lutz ◽  
S. Mukherjee

This paper presents a novel application of the boundary element method to solve problems in linear elasticity. The new method is called the Boundary Contour Method. This approach requires no numerical integration at all for two-dimensional problems and numerical evaluation of line integrals only for three-dimensional problems; even for curved line or surface boundary elements of arbitrary shape! Numerical results are presented for some two-dimensional problems.


The imaginary and complex branches of the dispersion spectra corresponding to flexural waves in circular cylindrical shells of various wall thicknesses including the solid cylinder have been constructed by utilizing exact three-dimensional equations of linear elasticity. The effects of wall thickness and Poisson ratio on the cut-off frequencies have been studied. Complex branches emanate from the points of frequency extrema on the purely imaginary or purely real branches and intersect the zero frequency plane, either as purely imaginary or as complex branches. The waves associated with complex branches emerging from points on the real plane are less decaying at higher frequencies.


Author(s):  
Shaofan Li ◽  
Anurag Gupta ◽  
Xanthippi Markenscoff

In this paper, we present new conservation laws of linear elasticity which have been discovered. These newly discovered conservation laws are expressed solely in terms of the Cauchy stress tensor, and they are genuine, non–trivial conservation laws that are intrinsically different from the displacement conservation laws previously known. They represent the variational symmetry conditions of combined Beltrami–Michell compatibility equations and the equilibrium equations. To derive these conservation laws, Noether's theorem is extended to partial differential equations of a tensorial field with general boundary conditions. By applying the tensorial version of Noether's theorem to Pobedrja's stress formulation of three–dimensional elasticity, a class of new conservation laws in terms of stresses has been obtained.


Sign in / Sign up

Export Citation Format

Share Document