Finite deformation analysis of a thin-walled tube sliding on a rough rigid rod

1987 ◽  
Vol 21 (4) ◽  
pp. 363-377 ◽  
Author(s):  
A. D. Kydoniefs ◽  
A. J. M. Spencer
Alloy Digest ◽  
1994 ◽  
Vol 43 (8) ◽  

Abstract NICROBRAZ 50 is a low-melting, free-flowing filter metal for honeycomb structures and thin-walled tube assemblies. It has low solubility. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-460. Producer or source: Wall Colmonoy Corporation.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1221
Author(s):  
Lu Bai ◽  
Jun Liu ◽  
Ziang Wang ◽  
Shuanggui Zou

In the field of cold bending, it is necessary to use ball mandrels, especially to bend thin-walled tubes with a small radius. However, the bending process with a ball mandrel is complex and expensive, and it is easy to jam the core ball inside the tube. To solve these issues, we designed two kinds of hollow non-ball mandrel schemes with low stiffness that were suitable for the small radius bending of thin-walled tubes. We evaluated the forming quality of cold bending numerically and the influence of the hollow section length and thickness on the forming indices. Our results showed that the thickness of the hollow section has a greater influence on forming quality than the length. As the hollow section’s thickness increased, the wrinkling rate first declined by approximately 40% and then increased by above 50%. When the thickness was 11 mm in scheme 1 and 13 mm in scheme 2, the wrinkling rate reached minimum values of 1.32% and 1.50%, respectively. As the hollow section’s thickness increased, the flattening rate decreased by more than 60% and the thinning rate increased by about 40%. A multi-objective optimization of forming indices was carried out by ideal point method and grey wolf optimizer. By comparing the forming results before and after optimization, the feasibility of using the proposed hollow mandrel was proved, and the hollow mandrel scheme of standard cylinder is therefore recommended.


2021 ◽  
Vol 11 (5) ◽  
pp. 2142
Author(s):  
Trung-Kien Le ◽  
Tuan-Anh Bui

Motorbike shock absorbers made with a closed die employ a tube-forming process that is more sensitive than that of a solid billet, because the tube is usually too thin-walled to conserve material. During tube forming, defects such as folding and cracking occur due to unstable tube forming and abnormal material flow. It is therefore essential to understand the relationship between the appearance of defects and the number of forming steps to optimize technological parameters. Based on both finite element method (FEM) simulations and microstructural observations, we demonstrate the important role of the number and methodology of the forming steps on the material flow, defects, and metal fiber anisotropy of motorbike shock absorbers formed from a thin-walled tube. We find limits of the thickness and height ratios of the tube that must be held in order to avoid defects. Our study provides an important guide to workpiece and processing design that can improve the forming quality of products using tube forming.


2005 ◽  
Vol 73 (6) ◽  
pp. 970-976 ◽  
Author(s):  
Fernando G. Flores

An assumed strain approach for a linear triangular element able to handle finite deformation problems is presented in this paper. The element is based on a total Lagrangian formulation and its geometry is defined by three nodes with only translational degrees of freedom. The strains are computed from the metric tensor, which is interpolated linearly from the values obtained at the mid-side points of the element. The evaluation of the gradient at each side of the triangle is made resorting to the geometry of the adjacent elements, leading to a four element patch. The approach is then nonconforming, nevertheless the element passes the patch test. To deal with plasticity at finite deformations a logarithmic stress-strain pair is used where an additive decomposition of elastic and plastic strains is adopted. A hyper-elastic model for the elastic linear stress-strain relation and an isotropic quadratic yield function (Mises) for the plastic part are considered. The element has been implemented in two finite element codes: an implicit static/dynamic program for moderately non-linear problems and an explicit dynamic code for problems with strong nonlinearities. Several examples are shown to assess the behavior of the present element in linear plane stress states and non-linear plane strain states as well as in axi-symmetric problems.


Author(s):  
Weiye Zhang ◽  
Yanchen Li ◽  
Beibei Wang ◽  
Jingmeng Sun ◽  
Lin Lin ◽  
...  

A cellulose carbonaceous aerogel/MnO2 ultrathick electrode with a unique low curvature, porous carbon thin-walled tube array structure was obtained from natural wood using a simple top-down approach.


2021 ◽  
Vol 72 ◽  
pp. 215-226
Author(s):  
Cheng Cheng ◽  
Hao Chen ◽  
Jiaxin Guo ◽  
Xunzhong Guo ◽  
Yuanji Shi

Sign in / Sign up

Export Citation Format

Share Document