Transfer of genes for utilization of starch (sta2) and melibiose (mel) to industrial strains of Saccharomyces cerevisiae by single-chromosome transfer, using a kar1 mutant as vector

1992 ◽  
Vol 37 (2) ◽  
pp. 230-234 ◽  
Author(s):  
J. F. T. Spencer ◽  
Dorothy M. Spencer ◽  
Lucia de Figueroa ◽  
J.-M. Nougues ◽  
H. Heluane
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yanfei Cheng ◽  
Hui Zhu ◽  
Zhengda Du ◽  
Xuena Guo ◽  
Chenyao Zhou ◽  
...  

Abstract Background Saccharomyces cerevisiae is well-known as an ideal model system for basic research and important industrial microorganism for biotechnological applications. Acetic acid is an important growth inhibitor that has deleterious effects on both the growth and fermentation performance of yeast cells. Comprehensive understanding of the mechanisms underlying S. cerevisiae adaptive response to acetic acid is always a focus and indispensable for development of robust industrial strains. eIF5A is a specific translation factor that is especially required for the formation of peptide bond between certain residues including proline regarded as poor substrates for slow peptide bond formation. Decrease of eIF5A activity resulted in temperature-sensitive phenotype of yeast, while up-regulation of eIF5A protected transgenic Arabidopsis against high temperature, oxidative or osmotic stress. However, the exact roles and functional mechanisms of eIF5A in stress response are as yet largely unknown. Results In this research, we compared cell growth between the eIF5A overexpressing and the control S. cerevisiae strains under various stressed conditions. Improvement of acetic acid tolerance by enhanced eIF5A activity was observed all in spot assay, growth profiles and survival assay. eIF5A prompts the synthesis of Ume6p, a pleiotropic transcriptional factor containing polyproline motifs, mainly in a translational related way. As a consequence, BEM4, BUD21 and IME4, the direct targets of Ume6p, were up-regulated in eIF5A overexpressing strain, especially under acetic acid stress. Overexpression of UME6 results in similar profiles of cell growth and target genes transcription to eIF5A overexpression, confirming the role of Ume6p and its association between eIF5A and acetic acid tolerance. Conclusion Translation factor eIF5A protects yeast cells against acetic acid challenge by the eIF5A-Ume6p-Bud21p/Ime4p/Bem4p axles, which provides new insights into the molecular mechanisms underlying the adaptive response and tolerance to acetic acid in S. cerevisiae and novel targets for construction of robust industrial strains.


2006 ◽  
Vol 23 (5) ◽  
pp. 697-704 ◽  
Author(s):  
Paula Cristina da Silva ◽  
Jorge Horii ◽  
Viviane Santos Miranda ◽  
Heloísa Gallera Brunetto ◽  
Sandra Regina Ceccato-Antonini

2020 ◽  
Vol 8 (12) ◽  
pp. 1914
Author(s):  
Elizabeth L. I. Wightman ◽  
Heinrich Kroukamp ◽  
Isak S. Pretorius ◽  
Ian T. Paulsen ◽  
Helena K. M. Nevalainen

Genome-scale engineering and custom synthetic genomes are reshaping the next generation of industrial yeast strains. The Cre-recombinase-mediated chromosomal rearrangement mechanism of designer synthetic Saccharomyces cerevisiae chromosomes, known as SCRaMbLE, is a powerful tool which allows rapid genome evolution upon command. This system is able to generate millions of novel genomes with potential valuable phenotypes, but the excessive loss of essential genes often results in poor growth or even the death of cells with useful phenotypes. In this study we expanded the versatility of SCRaMbLE to industrial strains, and evaluated different control measures to optimize genomic rearrangement, whilst limiting cell death. To achieve this, we have developed RED (rapid evolution detection), a simple colorimetric plate-assay procedure to rapidly quantify the degree of genomic rearrangements within a post-SCRaMbLE yeast population. RED-enabled semi-synthetic strains were mated with the haploid progeny of industrial yeast strains to produce stress-tolerant heterozygous diploid strains. Analysis of these heterozygous strains with the RED-assay, genome sequencing and custom bioinformatics scripts demonstrated a correlation between RED-assay frequencies and physical genomic rearrangements. Here we show that RED is a fast and effective method to evaluate the optimal SCRaMbLE induction times of different Cre-recombinase expression systems for the development of industrial strains.


Genetics ◽  
2020 ◽  
Vol 216 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Lydia R. Heasley ◽  
Ruth A. Watson ◽  
Juan Lucas Argueso

Remarkably complex patterns of aneuploidy have been observed in the genomes of many eukaryotic cell types, ranging from brewing yeasts to tumor cells. Such aberrant karyotypes are generally thought to take shape progressively over many generations, but evidence also suggests that genomes may undergo faster modes of evolution. Here, we used diploid Saccharomyces cerevisiae cells to investigate the dynamics with which aneuploidies arise. We found that cells selected for the loss of a single chromosome often acquired additional unselected aneuploidies concomitantly. The degrees to which these genomes were altered fell along a spectrum, ranging from simple events affecting just a single chromosome, to systemic events involving many. The striking complexity of karyotypes arising from systemic events, combined with the high frequency at which we detected them, demonstrates that cells can rapidly achieve highly altered genomic configurations during temporally restricted episodes of genomic instability.


Plasmid ◽  
2013 ◽  
Vol 69 (1) ◽  
pp. 114-117 ◽  
Author(s):  
Fernanda Cristina Bezerra Leite ◽  
Rute Salgues Gueiros dos Anjos ◽  
Anna Carla Moreira Basilio ◽  
Guilherme Felipe Carvalho Leal ◽  
Diogo Ardaillon Simões ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document