Co-localization of ecdysteroid receptors and c-fos-like protein in the brain of Manduca sexta larvae

1991 ◽  
Vol 200 (3) ◽  
pp. 149-155 ◽  
Author(s):  
Hans-J�rgen Bidmon ◽  
Noelle Audrey Granger ◽  
Walter Erich Stumpf
1974 ◽  
Vol 60 (2) ◽  
pp. 371-382 ◽  
Author(s):  
JAMES W. TRUMAN ◽  
LYNN M. RIDDIFORD

1. Late in the fifth instar, Manduca sexta larvae cease feeding and become ‘wandering larvae’ which are morphologically characterized by an ‘exposed heart’ and the appearance of a pink pigment along the dorsal midline. Two days later ocellar retraction signals the beginning of the prepupal period and 3 days thereafter the pupal ecdysis occurs. 2. The timing of the endocrine events which are responsible for these changes was determined by ligaturing animals of the appropriate developmental stage at various times of day. The times of prothoracicotropic hormone (PTTH) release by the brain were determined by neck ligations. Estimates of the times of prothoracic gland activity were obtained through the isolation of abdomens. 3. It was found that the fifth stage larva releases PTTH on two occasions. The first release lasts approximately 3.5 h and triggers the transformation to the wandering stage. The second release occurs two days later, lasts at least 7 h, and provokes the onset of the pupal moult. 4. The prothoracic glands are involved in triggering the same two changes. In the first instance the glands apparently require the continuing influence of the brain and consequently secrete for about 3.5 h. During the stimulation of the pupal moult the prothoracic glands become ‘turned-on’ and continue to secrete for at least 10 h after the time when the brain is no longer required. In this latter instance the total time of prothoracic gland activity may be as long as 17 h.


1986 ◽  
Vol 121 (1) ◽  
pp. 133-151 ◽  
Author(s):  
O. S. Dominick ◽  
J. W. Truman

Prior to exposure to ecdysteroids, the isolated central nervous system (CNS) of the fifth instar Manduca sexta larvae exhibited infrequent motor bursts over a 24-h period of extracellular recording from segmental motor nerves. In contrast, the CNS isolated from wandering larvae was characterized by persistent, frequent spontaneous motor bursts throughout the 24-h incubation. The motor bursts generated by the isolated CNS of wandering larvae were similar to those observed in deafferented segments of partially dissected wandering larvae during locomotion. In both cases bursts in the deafferented ganglia were synchronous and had a lower frequency than in intact animals. Removal of the brain from a CNS isolated prior to ecdysteroid exposure resulted in the appearance of spontaneous bursts, which were abolished by removing the suboesophageal ganglion (SEG). By contrast, when the brain was removed from the isolated CNS of wandering larvae, spontaneous bursts ceased. These results parallel the behavioural effects of the same lesions in intact larvae of the respective stages. The CNS isolated from larvae prior to ecdysteroid exposure initiated sustained frequent bursting after an average latency of 15 h following incubation in haemolymph taken from larvae during the interval of ecdysteroid secretion. Incubations of the CNS with 1 microgram ml-1 20-hydroxyecdysone (20-HE) resulted in the onset of the same pattern of sustained motor activity. In a CNS isolated prior to ecdysone release, it was necessary and sufficient to expose the brain to 20-HE in order to induce the state of persistent motor bursts characteristic of wandering. We conclude that the spontaneous persistent motor bursts observed in the isolated CNS of wandering larvae are directly related to the sustained locomotion seen during the wandering behaviour. 20-HE acts directly on the CNS, specifically the brain, to induce this state of neural activity.


1989 ◽  
Vol 147 (1) ◽  
pp. 457-470 ◽  
Author(s):  
JAMES W. TRUMAN ◽  
PHILIP F. COPENHAVER

Larval and pupal ecdyses of the moth Manduca sexta are triggered by eclosion hormone (EH) released from the ventral nervous system. The major store of EH activity in the latter resides in the proctodeal nerves that extend along the larval hindgut. At pupal ecdysis, the proctodeal nerves show a 90% depletion of stored activity, suggesting that they are the major release site for the circulating EH that causes ecdysis. Surgical experiments involving the transection of the nerve cord or removal of parts of the brain showed that the proctodeal nerve activity originates from the brain. Retrograde and anterograde cobalt fills and immunocytochemistry using antibodies against EH revealed two pairs of neurons that reside in the ventromedial region of the brain and whose axons travel ipsilaterally along the length of the central nervous system (CNS) and project into the proctodeal nerve, where they show varicose release sites. These neurons constitute a novel neuroendocrine pathway in insects which appears to be dedicated solely to the release of EH.


1999 ◽  
Vol 202 (2) ◽  
pp. 103-113 ◽  
Author(s):  
R.M. Johnston ◽  
C. Consoulas ◽  
H. Pflüger ◽  
R.B. Levine

The unpaired median neurons are common to the segmental ganglia of many insects. Although some of the functional consequences of their activation, among them the release of octopamine to modulate muscle contraction, have been described, less is understood about how and when these neurons are recruited during movement. The present study demonstrates that peripherally projecting unpaired median neurons in the abdominal and thoracic ganglia of the larval tobacco hornworm Manduca sexta are recruited rhythmically during the fictive crawling motor activity that is produced by the isolated central nervous system in response to pilocarpine. Regardless of the muscles to which they project, the efferent unpaired median neurons in all segmental ganglia are depolarized together during the phase of the crawling cycle when the thoracic leg levator motoneurons are active. During fictive crawling, therefore, the unpaired median neurons are not necessarily active in synchrony with the muscles to which they project. The rhythmical synaptic drive of the efferent unpaired median neurons is derived, at least in part, from a source within the subesophageal ganglion, even when the motor pattern is evoked by exposing only the more posterior ganglia to pilocarpine. In pairwise intracellular recordings from unpaired median neurons in different ganglia, prominent excitatory postsynaptic potentials, which occur with an anterior-to-posterior delay in both neurons, are seen to underlie the rhythmic depolarizations. One model consistent with these findings is that one or more neurons within the subesophageal ganglion, which project posteriorly to the segmental ganglia and ordinarily provide unpatterned synaptic inputs to all efferent unpaired median neurons, become rhythmically active during fictive crawling in response to ascending information from the segmental pattern-generating network.


2001 ◽  
Vol 204 (2) ◽  
pp. 305-314 ◽  
Author(s):  
A. Nighorn ◽  
P.J. Simpson ◽  
D.B. Morton

Guanylyl cyclases are usually characterized as being either soluble (sGCs) or receptor (rGCs). We have recently cloned a novel guanylyl cyclase, MsGC-I, from the developing nervous system of the hawkmoth Manduca sexta that cannot be classified as either an sGC or an rGC. MsGC-I shows highest sequence identity with receptor guanylyl cyclases throughout its catalytic and dimerization domains, but does not contain the ligand-binding, transmembrane or kinase-like domains characteristic of receptor guanylyl cyclases. In addition, MsGC-I contains a C-terminal extension of 149 amino acid residues. In this paper, we report the expression of MsGC-I in the adult. Northern blots show that it is expressed preferentially in the nervous system, with high levels in the pharate adult brain and antennae. In the antennae, immunohistochemical analyses show that it is expressed in the cell bodies and dendrites, but not axons, of olfactory receptor neurons. In the brain, it is expressed in a variety of sensory neuropils including the antennal and optic lobes. It is also expressed in structures involved in higher-order processing including the mushroom bodies and central complex. This complicated expression pattern suggests that this novel guanylyl cyclase plays an important role in mediating cyclic GMP levels in the nervous system of Manduca sexta.


1985 ◽  
Vol 114 (1) ◽  
pp. 397-414
Author(s):  
Nicholas Platt ◽  
Stuart E. Reynolds

1. A semi-isolated caterpillar heart bioassay was used to detect the presence of endogenous cardioactive material in the CNS of Manduca sexta larvae. 2. Cardioactivity was detected in all nervous tissue examined. Most activity (about 70% of the total in the CNS) was in the ganglia of the abdominal nerve cord (ANC). Cardioactivity was also detected in the abdominal transverse nerves, the proctodeal nerves and the corpora cardiaca/corpora allata. The source with the highest specific activity was the frontal ganglion. 3. Two factors, separable by Sephadex gel filtration, were distinguished in extracts of ANC: CAF 1, which has an estimated relative molecular mass (Mr) of about 4000, and CAF2 for which Mr is probably less than 1000. Both factors are apparently peptides. Neither is similar to any known insect cardioaccelerator. 4. Both CAF 1 and CAF 2 are able to cause cardioacceleration when injected into tetrodotoxin-paralysed caterpillars. 5. CAF 2 is present in both larvae and in adults. CAF 1 is present only in the caterpillar. The larval heart responds to both factors; the adult heart responds only to CAF 2. 6. Partial purification of CAF 1 and CAF 2 by reverse-phase HPLC gives a single peak of bioactivity in each case. 7. The biological activity of CAF 1 is destroyed by α-chymotrypsin, but not by trypsin. CAF 2 is not attacked by trypsin or by α-chymotrypsin. Treatment with performic acid or cyanogen bromide destroys the activity of both CAF 1 and CAF 2.


Sign in / Sign up

Export Citation Format

Share Document