In vivo effects of tunicamycin on the secretory processes of rat parotid glands

1987 ◽  
Vol 250 (2) ◽  
Author(s):  
Hideaki Tamaki ◽  
Shohei Yamashina
1987 ◽  
Vol 66 (2) ◽  
pp. 537-540 ◽  
Author(s):  
K.T. Izutsu ◽  
D.E. Johnson ◽  
M. Goddard

Electron probe x-ray micro-analysis was used to study the elemental concentration changes that occur during pilocarpine-stimulated saliva secretion. Quantitative x-ray micro-analysis of elemental concentrations in intracellular compartments of rat parotid glands stimulated in vivo with pilocarpine showed that Na concentration was significantly increased, while K concentration was significantly reduced. The magnitude of these changes was consistent with values obtained in other tissues with the x-ray micro-analysis method, and in the same tissue with other experimental methods. Comparisons with results from studies utilizing dispersed acini suggest that acinar dispersion procedures may affect intracellular elemental concentrations. Total electrolyte concentrations in cytoplasm and secretory granules were estimated to increase on a dry-weight basis following pilocarpine stimulation. The former change is consistent with the notion of a trans-cellular route of salivary fluid flow, while the latter change may be important in the exocytosis of secretory granules.


1977 ◽  
Vol 73 (3) ◽  
pp. 578-593 ◽  
Author(s):  
C Patzelt ◽  
D Brown ◽  
B Jeanrenaud

Colchicine inhibited amylase secretion by isolated rat parotid glands only 6 h after administration of the drug in vivo. This delayed effect was not the result of the inability of the drug to reach its reaction site. When parotid glands were emptied of their secretory granules by isoproterenol treatment, the subsequent replenishment of cells with granules was inhibited by colchicines. Colchicine concomitantly produced alterations of the Golgi complexes, the cisternae of which were reduced in size and surrounded by clusters of microvesicles. Incubation of parotid glands with colchicines for prolonged durations failed to alter stored amylase secretion as stimulated by isoproterenol, but it inhibited the release of de novo synthesized enzyme. Another colchicines-binding activity, firmly bound to the particular fraction of homogenates, was found, of which a part may represent membrane located microtubular protein. An assembly-disassembly cycle of microtubules appears to exist in the parotid gland, as in the liver. However, only 14 percent of tubulin was found to be polymerized as microtubules in parotid glands as opposed to 40 percent in the liver. The present data suggest that colchicine primarily inhibits the transfer of secretory material towards or away from the Golgi complexes but not the hormone-stimulated secretion of stored amylase.


2019 ◽  
Vol 98 (7) ◽  
pp. 786-794 ◽  
Author(s):  
H.W. Lee ◽  
Y.C. Hsiao ◽  
Y.C. Chen ◽  
T.H. Young ◽  
T.L. Yang

Dysfunctional salivary glands (SGs) are a clinical challenge due to the lack of effective treatments. Cell therapy with stem/progenitor cells may improve this situation by providing promising therapeutic solutions. Therefore, exploring abundant cellular sources is important. Three major pairs of SGs are located in different anatomic regions: the parotid glands, the submandibular glands, and the sublingual glands. Although SG stem/progenitor cells can be isolated and cultivated from all major SGs as salispheres, the differences among SG origins remain unclear. In this study, salispheres were successfully isolated from all major SGs. The salispheres demonstrated unique cellular features that originated from their native tissues. The characteristic expression profiles and cellular features of SG stem cells were demonstrated in all salispheres. When they were transplanted into irradiated animals, the salispheres were all capable of improving the saliva secretion that was disrupted by irradiation. Typical histologic structures could be observed in most parts of the treated glands, and the fibrotic environments of irradiated submandibular glands were remodeled by all salispheres regardless of origins. This study characterized the cellular features and in vivo effects of salispheres that were derived from different anatomic origins. The results suggest the possibility of functional redundancy among distinct pairs of major SGs, which is useful for the design of cell therapy to treat dysfunctional glandular organs.


Author(s):  
Hiroyuki Fujinami ◽  
Takao Komabayshi ◽  
Tetsuya Izawa ◽  
Takayuki Nakamura ◽  
Kazuhiro Suda ◽  
...  

2000 ◽  
Vol 279 (5) ◽  
pp. C1516-C1527 ◽  
Author(s):  
Kinji Kurihara ◽  
Nobuo Nakanishi ◽  
Takao Ueha

Na+-K+- ATPase α-subunits in basolateral membrane vesicles (BLMVs) purified from rat parotid glands were 32P-labeled within 5 s by incubation with [γ-32P]ATP at 37°C in the presence of cAMP, but no labeling occurred without cAMP. Phosphorylation of Na+-K+-ATPase was associated with a decrease in its activity. This α-subunit phosphorylation disappeared when BLMVs were briefly incubated with cAMP and subsequent washing before the incubation with [γ-32P]ATP, indicating that catalytic subunit of protein kinase A (PKA) associated to BLMVs via binding with its RII regulatory subunit anchored on the membrane. In the absence of cAMP, a PKA catalytic subunit readily reassociated with the membrane-bound RII subunit. HT-31 peptide inhibited the Na+-K+-ATPase phosphorylation by membrane-bound endogenous PKA, indicating an involvement of A-kinase anchoring protein (AKAP). AKAP-150 protein in BLMVs was shown by immunoblotting and an RII overlay assay and was coimmunoprecipitated by anti-RII antibody. These results show that Na+-K+-ATPase of rat parotid gland acinar cells is regulated in vivo by membrane-anchored PKA via AKAP rather than by free cytosolic PKA.


Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
E Lopez-Rodriguez ◽  
C Boden ◽  
S Knippenberg ◽  
A Pascual ◽  
J Perez-Gil ◽  
...  

1999 ◽  
Vol 12 (04) ◽  
pp. 173-177 ◽  
Author(s):  
R. L. Aper ◽  
M. D. Brown ◽  
M. G. Conzemius

SummaryTreatment of canine hip dysplasia (CHD) via triple pelvic osteotomy (TPO) is widely accepted as the treatment that best preserves the existing hip joint. TPO, however, has several important disadvantages. In an effort to avoid some of the difficulties associated with TPO an alternative method of creating acetabular ventroversion (AW) was sought. The purpose of this study was to explore the effects of placement of a wedge in the sacroiliac (SI) joint on A W and to compare this to the effect of TPO on A W . On one hemipelvis a 30° pelvic osteotomy plate was used for TPO. The contralateral hemipelvis had a 28° SI wedge inserted into the SI joint. Pre- and postsurgical radiographs of each pelvis were taken and the angular measurements were recorded. On average, the 28° SI wedge resulted in 20.9° of A W, the 30° canine pelvic osteotomy plate resulted in 24.9° A W . Significant differences were not found (p >0.05) between the two techniques. Sacroiliac wedge rotation effectively creates A W and has several theoretical advantages when compared to TPO. The in vivo effects of sacroiliac wedge rotation should be studied in order to evaluate the clinical effect of the technique.Sacroiliac wedge rotation was tested as an alternative method to increase the angle of acetabular ventroversion. This technique effectively rotated the acetabulum and has several theoretical advantages when compared to triple pelvic osteotomy.


Diabetes ◽  
1980 ◽  
Vol 29 (9) ◽  
pp. 702-709 ◽  
Author(s):  
M. P. Diamond ◽  
R. C. Rollings ◽  
L. Erlendson ◽  
P. E. Williams ◽  
W. W. Lacy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document