pacemaker function
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 22)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Alexander V Maltsev ◽  
Michael D Stern ◽  
Edward G Lakatta ◽  
Victor A Maltsev

Each heartbeat is initiated by specialized pacemaker cells operating within the sinoatrial node (SAN). While individual cells within SAN tissue exhibit substantial heterogeneity of their electrophysiological parameters and Ca cycling, the role of this heterogeneity for cardiac pacemaker function remains mainly unknown. Here we investigated the problem numerically in a 25x25 square grid of coupled-clock Maltsev-Lakatta cell models and tested the hypothesis that functional heterogeneity of cell populations increases robustness of SAN function. The tissue models were populated by cells with different degree of heterogeneity of the two key model parameters of the coupled-clock system, maximum L-type Ca current conductance (gCaL) and sarcoplasmic reticulum Ca pumping rate (Pup). Our simulations showed that in the areas of Pup-gCaL parametric space at the edge of the system stability where action potential (AP) firing was absent or dysrhythmic in tissues populated by identical cells, rhythmic AP generation was rescued in tissues populated by cells with uniformly random distributions of gCaL or Pup (but keeping the same average values). This effect to increase robust AP generation was synergistic with respect to heterogeneity in both gCaL and Pup and was further strengthened by clustering of cells with higher gCaL or Pup. The effect of functional heterogeneity was not due to a simple summation of activity of intrinsically firing cells naturally present in SAN; rather AP firing cells locally and critically interacted with non-firing/dormant cells. When firing cells prevailed, they recruited many dormant cells to fire, strongly enhancing overall SAN function. And vice versa, prevailing dormant cells suppressed AP firing in cells with intrinsic automaticity and halted SAN automaticity.


2021 ◽  
Author(s):  
Anna Maltsev ◽  
Victor A Maltsev

Excitation-contraction coupling kinetics are dictated by the rate and rhythm of the excitations generated by sinoatrial-nodal cells. These cells generate local Ca releases (LCRs) that activate Na/Ca exchanger current, which accelerates diastolic depolarization and determines the rate and rhythm of the excitations. The LCRs are generated by clusters of ryanodine receptors, Ca release units (CRUs), residing in the sarcoplasmic reticulum. While the spatial CRU distribution in pacemaker cells exhibits substantial heterogeneity, it remains unknown if it has any functional importance. Using numerical modeling, here we showed that with a square lattice distribution of CRUs, Ca-induced-Ca-release propagation during diastolic depolarization is insufficient for pacemaking within a broad lower range of realistic ICaL densities. Allowing each CRU to deviate from its original lattice position fundamentally changes the model behavior: during diastolic depolarization sparks propagate, forming LCRs observed experimentally. As disorder in the CRU positions increases, the CRU distribution exhibits larger empty spaces but simultaneously CRU clusters, as in Poisson clumping. Propagating within the clusters, Ca release becomes synchronized, increasing AP firing rate and reviving pacemaker function within lower ICaL densities at which cells with lattice CRU distribution were dormant/non-firing. However, cells with fully disordered CRU positions cannot reach low firing rates and their β-adrenergic receptor stimulation effect was substantially decreased. Thus, order/disorder in CRU locations regulates Ca release propagation and could be harnessed by pacemaker cells to regulate their function. Excessive disorder is expected to limit heart rate range that may contribute to heart rate range decline with age and in disease.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rashid Minhas ◽  
Henry Loeffler-Wirth ◽  
Yusra H. Siddiqui ◽  
Tomasz Obrębski ◽  
Shikha Vashisht ◽  
...  

Abstract Background Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. Results To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. Conclusion Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.


2021 ◽  
Vol 22 (16) ◽  
pp. 8414
Author(s):  
Tatiana M. Vinogradova ◽  
Edward G. Lakatta

The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).


2021 ◽  
Vol 12 ◽  
Author(s):  
Michael J. Wallace ◽  
Mona El Refaey ◽  
Pietro Mesirca ◽  
Thomas J. Hund ◽  
Matteo E. Mangoni ◽  
...  

The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.


2021 ◽  
Vol 13 (1) ◽  
pp. 111
Author(s):  
D. Mika ◽  
W. Pereira ◽  
A. Gomez ◽  
R. Fischmeister ◽  
G. Vandecasteele

2021 ◽  
Vol 320 (1) ◽  
pp. H95-H107 ◽  
Author(s):  
Rebecca A. Capel ◽  
Samuel J. Bose ◽  
Thomas P. Collins ◽  
Skanda Rajasundaram ◽  
Thamali Ayagama ◽  
...  

This study provides evidence supporting the proposal that IP3 signaling in cardiac atria and sinoatrial node involves stimulation of Ca2+-activated adenylyl cyclases (AC1 and AC8) by IP3-evoked Ca2+ release from junctional sarcoplasmic reticulum. AC8 and IP3 receptors are shown to be located close together, while AC1 is nearby. Greater understanding of these novel aspects of the IP3 signal transduction mechanism is important for future study in atrial physiology and pathophysiology, particularly atrial fibrillation.


2020 ◽  
Author(s):  
Rashid Minhas ◽  
Henry Loeffler-Wirth ◽  
Yusra Siddiqui ◽  
Tomasz Obrebski ◽  
Shikha Vhashist ◽  
...  

Abstract Background: Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. Results: To characterize the molecular profile of the SAR and elucidate the mechanism of pacemaker function, we utilized the zebrafish transgenic line sqet33mi59BEt to isolate cells of the sinoatrial ring (SAR) of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. Conclusion: Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.


2020 ◽  
Vol 12 (10) ◽  
pp. 1133-1151
Author(s):  
Fabrice F Darche ◽  
Rasmus Rivinius ◽  
Ann-Kathrin Rahm ◽  
Eva Köllensperger ◽  
Uwe Leimer ◽  
...  

2020 ◽  
Vol 12 (2-4) ◽  
pp. 256
Author(s):  
W. Pereira De Vasconcelos ◽  
A.M. Gomez ◽  
R. Fischmeister ◽  
G. Vandecasteele ◽  
D. Mika

Sign in / Sign up

Export Citation Format

Share Document