A chalcone synthase/stilbene synthase DNA probe for conifers

1996 ◽  
Vol 92 (7) ◽  
pp. 827-831 ◽  
Author(s):  
S. M. Baker ◽  
E. E. White

1996 ◽  
Vol 92 (7) ◽  
pp. 827-831
Author(s):  
S. M. Baker ◽  
E. E. White


2004 ◽  
Vol 84 (10) ◽  
pp. 1186-1192 ◽  
Author(s):  
Miguel A Faria ◽  
Marisa Beja-Pereira ◽  
Antero Martins ◽  
Margarida A Ferreira ◽  
Maria Eugénia S Nunes


1984 ◽  
Vol 75 (2) ◽  
pp. 489-492 ◽  
Author(s):  
Claus-Henning Rolfs ◽  
Helmut Kindl


FEBS Letters ◽  
1999 ◽  
Vol 460 (3) ◽  
pp. 457-461 ◽  
Author(s):  
Toshio Yamaguchi ◽  
Fumiya Kurosaki ◽  
Dae-Yeon Suh ◽  
Ushio Sankawa ◽  
Mizue Nishioka ◽  
...  


2001 ◽  
Vol 24 (1-4) ◽  
pp. 257-261 ◽  
Author(s):  
Miriam G.G. Contessotto ◽  
Claudia B. Monteiro-Vitorello ◽  
Pilar D.S.C. Mariani ◽  
Luiz L. Coutinho

Sequences from the sugarcane expressed sequence tag (SUCEST) database were analyzed based on their identities to genes encoding chalcone-synthase-like enzymes. The sorghum (Sorghum bicolor) chalcone-synthase (CHS, EC 2.3.1.74) protein sequence (gi|12229613) was used to search the SUCEST database for clusters of sequencing reads that were most similar to chalcone synthase. We found 121 reads with homology to sorghum chalcone synthase, which we were then able to sort into 14 clusters which themselves were divided into two groups (group 1 and group 2) based on the similarity of their deduced amino acid sequences. Clusters in group 1 were more similar to the sorghum enzyme than those in group 2, having the consensus sequence of the active site of chalcone and stilbene synthase. Analysis of gene expression (based on the number of reads from a specific library present in each group) indicated that most of the group 1 reads were from sugarcane flower and root libraries. Group 2 clusters were more similar to the amino acid sequence of an uncharacterized pathogen-induced protein (PI1, gi|9855801) from the S. bicolor expressed sequence tag (EST) database. The group 2 clusters sequences and PI1 proteins are 90% identical, having two amino acid changes at the chalcone and stilbene synthase consensi but conserving the cysteine residue at the active site. The PI1 EST has not been previously associated with chalcone synthase and has a different consensus sequence from the previously described chalcone synthase of sorghum. Most of the group 2 reads were from libraries prepared from sugarcane roots and plants infected with Herbaspirillum rubrisubalbicans and Gluconacetobacter diazotroficans. Our results indicate that we have identified a sugarcane chalcone synthase similar to the pathogen-induced PI1 protein found in the sorghum cDNA libraries, and it appears that both proteins represent new members of the chalcone and stilbene synthase super-family.



2021 ◽  
Vol 43 (3) ◽  
pp. 47-58
Author(s):  
Huynh Thi Thu Hue ◽  
Nguyen Minh Phuong ◽  
Nguyen Xuan Canh

Two species of genus Pueraria ((Pueraria lobata (synonym: Pueraria montana var. lobata) and Pueraria mirifica (synonym: Pueraria candollei var. mirifica)) are traditional plants used in medicine since ancient times. These plants have been used and became commercially crucial indigenous medicinal plants. Currently, both roots and flowers of P. mirifica are used as a dietary supplement and functional food for women because of their rich source of phytoestrogen and nutrition. However, little information of genes on both species of Pueraria genus (P. lobata and P. mirifica) are known in Vietnam. The purpose of this research is to support more understanding about Chalcone synthase (CHS) genes by determining and sequence analyzing an encoding region of CHS genes that were isolated from P. lobata and P. mirifica. The full-length open reading frame (ORF) sequence CHS was identified with 1170 bp which encodes 389 amino acids by Sanger sequencing. The isolated CHS gene of P. lobata has no difference in sequence with CHS reported on GenBank (D10223.1), whereas a difference of 26 nucleotide positions in CHS sequence of P. mirifica compared with the published gene sequence (JQ409456.1) as consequential having  97.78% genetic similarity. The CHS genes sequence of P. lobata and P. mirifica are homologous with 98.4% because of having 19 nucleotide differences. Chalcone-stilbene synthase N-C terminal, PLN03173, CHS-like, BH0617, fabH are some important domains predicting the CHS genes. Especially, the family signature ‘GVLFGFGPGLTI’ motif of CHS gene as a part of the active-site scaffold contributes to decide the product of cyclization reactions performing the stereochemistry of cyclization which was also observed in P. lobata and P. mirifica, but it was not included for all members in Fabaceae family. With in sillico analysis, the P. lobata and P. mirifica CHS sequences have highly conserved regions to maintain their structure and function, so that it needs further studies to clarify these points.





2017 ◽  
Vol 47 (4) ◽  
pp. e12348 ◽  
Author(s):  
A. Kovalchuk ◽  
L. Zhu ◽  
S. Keriö ◽  
F. O. Asiegbu


Sign in / Sign up

Export Citation Format

Share Document