phytoalexin biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 8)

H-INDEX

29
(FIVE YEARS 1)

Author(s):  
Kincső Decsi ◽  
Barbara Kutasy ◽  
Márta Kiniczky ◽  
Géza Hegedűs ◽  
Zoltán Alföldi ◽  
...  

The effects of ELICE16INDURES, a well-known plant conditioner developed by the Research Institute for Medicinal Plants and Herbs Ltd. Budakalasz, Hungary, were studied in a soybean population. The active ingredients of the compound have been selected to help elicit general immunity in plants without pathogenic damage, thereby roborizing the healthy plant population and preparing it for possible future biotic stressors. Here we have analyzed changes in the expression levels of genes encoding enzymes involved in the catalysis of metabolic pathways that induce and regulate PAMP-triggered immunity (PTI) at two different time points and treatments. Twenty-three different enzymes were analyzed that catalyze different metabolic pathways, such as the biosyntheses of jasmonic acid, salicylic acid, ethylene, phenylpropanoid, flavonoid, and phytoalexin biosynthesis and cellular detoxification processes. Bioinformatical softwares werw used to analyze the results. It has been found that some of the primary defense mechanisms (e.g., Mitogen-Activated-Protein Kinase (MAPK) cascade, jasmonic acid biosynthesis, flavonoid and phytoalexin biosynthesis, etc.) that intensify following the attack of pathogens can be activated without the intrusion of the actual pathogen by an immunochemical. Thus, we proved that plant resistance can be artificially conditioned.


2021 ◽  
Vol 22 (18) ◽  
pp. 10080
Author(s):  
Faiza Gulzar ◽  
Jingye Fu ◽  
Chenying Zhu ◽  
Jie Yan ◽  
Xinglin Li ◽  
...  

Drought stress causes heavy damages to crop growth and productivity under global climatic changes. Transcription factors have been extensively studied in many crops to play important roles in plant growth and defense. However, there is a scarcity of studies regarding WRKY transcription factors regulating drought responses in maize crops. Previously, ZmWRKY79 was identified as the regulator of maize phytoalexin biosynthesis with inducible expression under different elicitation. Here, we elucidated the function of ZmWRKY79 in drought stress through regulating ABA biosynthesis. The overexpression of ZmWRKY79 in Arabidopsis improved the survival rate under drought stress, which was accompanied by more lateral roots, lower stomatal aperture, and water loss. ROS scavenging was also boosted by ZmWRKY79 to result in less H2O2 and MDA accumulation and increased antioxidant enzyme activities. Further analysis detected more ABA production in ZmWRKY79 overexpression lines under drought stress, which was consistent with up-regulated ABA biosynthetic gene expression by RNA-seq analysis. ZmWRKY79 was observed to target ZmAAO3 genes in maize protoplast through acting on the specific W-boxes of the corresponding gene promoters. Virus-induced gene silencing of ZmWRKY79 in maize resulted in compromised drought tolerance with more H2O2 accumulation and weaker root system architecture. Together, this study substantiates the role of ZmWRKY79 in the drought-tolerance mechanism through regulating ABA biosynthesis, suggesting its broad functions not only as the regulator in phytoalexin biosynthesis against pathogen infection but also playing the positive role in abiotic stress response, which provides a WRKY candidate gene to improve drought tolerance for maize and other crop plants.


Planta ◽  
2019 ◽  
Vol 250 (5) ◽  
pp. 1687-1702 ◽  
Author(s):  
Xi Chen ◽  
Fangjie Liu ◽  
Lu Liu ◽  
Jie Qiu ◽  
Dunhuang Fang ◽  
...  

2018 ◽  
Vol 123 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Raquel Salvador-Guirao ◽  
Patricia Baldrich ◽  
Shiho Tomiyama ◽  
Yue-Ie Hsing ◽  
Kazunori Okada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document