Mitochondrial genome structure of rice suspension culture from cytoplasmic male-sterile line (A-58CMS): reappraisal of the master circle

1992 ◽  
Vol 83 (3) ◽  
pp. 279-288 ◽  
Author(s):  
K. Yamato ◽  
Y. Ogura ◽  
T. Kanegae ◽  
Y. Yamada ◽  
K. Ohyama
1979 ◽  
Vol 21 (3) ◽  
pp. 417-422 ◽  
Author(s):  
G. J. Scoles ◽  
L. E. Evans

Three inbred lines of rye (Secale cereale L.) known to be capable of restoring fertility to a cytoplasmic male-sterile line were crossed with the sterile line. The proportions of male fertile, partially male fertile and male sterile plants in F2 and backcross progenies indicated that three dominant restorer genes were present in each line. These were designated Rf1, Rf2 and Rf3, their relative expressivity was Rf1>Rf2>Rf3. Expressivity was dependent upon environment. Partial fertility occurred when certain genotypes carried two of the three alleles as dominant, but was dependent upon genotype and environment.


1974 ◽  
Vol 52 (3) ◽  
pp. 435-441 ◽  
Author(s):  
Harry T. Horner Jr. ◽  
Milton A. Rogers

In the male-fertile line of pepper, microsporogenesis and pollen development are normal. During meiosis, the meiocytes become encased in callose and a locular cavity forms. A rudimentary pollen wall, preceded by primexine deposition, is formed at the tetrad stage around the microspores before their release from the callose. The tapetum remains peripheral in the locule until the vacuolate pollen stage when it disappears. The sporogenous cells of the cytoplasmic male-sterile line complete meiosis, and the callose-encased microspores also deposit a primexine. Further development of the microspores is arrested. Before and during meiosis the tapetal cells become highly vacuolate and remain appressed to the meiocytes; a locular cavity is not formed. After primexine deposition, the tetrads of microspores, which are still encased in callose, seem to collapse as they are encroached upon by the vacuolate tapetum. After abortion of the microspores the outer tapetal layer degenerates, followed by the inner tapetal layer. The aborted mass late in anther development consists of crushed microspore tetrads, primary walls of the sporogenous cells and tapetum, callose, and the collapsed tapetum. The manner of abortion in pepper is compared with previously described mechanisms.


1995 ◽  
pp. 345-352
Author(s):  
C. Zhujun ◽  
W. Bingliang ◽  
G. Qikang ◽  
D. Weimin ◽  
Z. Mingfang ◽  
...  

2012 ◽  
Vol 92 (15) ◽  
pp. 3046-3054 ◽  
Author(s):  
Jingyi Zhang ◽  
Changwei Zhang ◽  
Yan Cheng ◽  
Li Qi ◽  
Shumin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document