On the operator of symmetric differentiation on a compact Riemannian manifold with boundary

1980 ◽  
Vol 74 (2) ◽  
pp. 143-164 ◽  
Author(s):  
V. Georgescu
2017 ◽  
Vol 8 (1) ◽  
pp. 559-582 ◽  
Author(s):  
Mónica Clapp ◽  
Marco Ghimenti ◽  
Anna Maria Micheletti

Abstract We study the semiclassical limit to a singularly perturbed nonlinear Klein–Gordon–Maxwell–Proca system, with Neumann boundary conditions, on a Riemannian manifold {\mathfrak{M}} with boundary. We exhibit examples of manifolds, of arbitrary dimension, on which these systems have a solution which concentrates at a closed submanifold of the boundary of {\mathfrak{M}} , forming a positive layer, as the singular perturbation parameter goes to zero. Our results allow supercritical nonlinearities and apply, in particular, to bounded domains in {\mathbb{R}^{N}} . Similar results are obtained for the more classical electrostatic Klein–Gordon–Maxwell system with appropriate boundary conditions.


2006 ◽  
Vol 17 (03) ◽  
pp. 313-330 ◽  
Author(s):  
YUNYAN YANG

Let (M,g) be a 2-dimensional compact Riemannian manifold with boundary. In this paper, we use the method of blowing up analysis to prove the existence of the extremal functions for some Moser–Trudinger inequalities on (M,g).


1997 ◽  
Vol 20 (2) ◽  
pp. 397-402 ◽  
Author(s):  
E. M. E. Zayed

The spectral functionΘ(t)=∑i=1∞exp(−tλj), where{λj}j=1∞are the eigenvalues of the negative Laplace-Beltrami operator−Δ, is studied for a compact Riemannian manifoldΩof dimension “k” with a smooth boundary∂Ω, where a finite number of piecewise impedance boundary conditions(∂∂ni+γi)u=0on the parts∂Ωi(i=1,…,m)of the boundary∂Ωcan be considered, such that∂Ω=∪i=1m∂Ωi, andγi(i=1,…,m)are assumed to be smooth functions which are not strictly positive.


Author(s):  
David E. Blair

SynopsisClassically the tangent sphere bundles have formed a large class of contact manifolds; their contact structures are not in general regular, however. Specifically we prove that the natural contact structure on the tangent sphere bundle of a compact Riemannian manifold of non-positive constant curvature is not regular.


Sign in / Sign up

Export Citation Format

Share Document