The segregation of mitochondrial genes in yeast

1975 ◽  
Vol 139 (4) ◽  
pp. 329-339 ◽  
Author(s):  
Jean L. Forster ◽  
Roger A. Kleese
Keyword(s):  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vaibhav S. Marde ◽  
Prerna L. Tiwari ◽  
Nitu L. Wankhede ◽  
Brijesh G. Taksande ◽  
Aman B. Upaganlawar ◽  
...  

Abstract Background Over the last decade, aggregating evidences suggested that there is a causative link between mutation in gene associated with mitochondrial dysfunction and development of several neurodegenerative disorders. Main text Recent structural and functional studies associated with mitochondrial genes have shown that mitochondrial abnormalities possibly lead to mitochondrial dysfunction. Several studies on animal models of neurodegenerative diseases and mitochondrial genes have provided compelling evidence that mitochondria is involved in the initiation as well as progression of diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and Friedreich ataxia (FA). Conclusion In this mini-review, we have discussed the different etiologic and pathogenesis connected with the mitochondrial dysfunction and relevant neurodegenerative diseases that underlie the dominant part of mitochondrial genes in the disease development and its progress.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1711-1721
Author(s):  
Donald L Auger ◽  
Kathleen J Newton ◽  
James A Birchler

Abstract Each mitochondrion possesses a genome that encodes some of its own components. The nucleus encodes most of the mitochondrial proteins, including the polymerases and factors that regulate the expression of mitochondrial genes. Little is known about the number or location of these nuclear factors. B-A translocations were used to create dosage series for 14 different chromosome arms in maize plants with normal cytoplasm. The presence of one or more regulatory factors on a chromosome arm was indicated when variation of its dosage resulted in the alteration in the amount of a mitochondrial transcript. We used quantitative Northern analysis to assay the transcript levels of three mitochondrially encoded components of the cytochrome c oxidase complex (cox1, cox2, and cox3). Data for a nuclearly encoded component (cox5b) and for two mitochondrial genes that are unrelated to cytochrome c oxidase, ATP synthase α-subunit and 18S rRNA, were also determined. Two tissues, embryo and endosperm, were compared and most effects were found to be tissue specific. Significantly, the array of dosage effects upon mitochondrial genes was similar to what had been previously found for nuclear genes. These results support the concept that although mitochondrial genes are prokaryotic in origin, their regulation has been extensively integrated into the eukaryotic cell.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Hideki Mutai ◽  
Hiroko Kouike ◽  
Eiko Teruya ◽  
Ikuko Takahashi-Kodomari ◽  
Hiroki Kakishima ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27147 ◽  
Author(s):  
Federico Plazzi ◽  
Alessandro Ceregato ◽  
Marco Taviani ◽  
Marco Passamonti

Sign in / Sign up

Export Citation Format

Share Document