Modification of Amaya-Sugiura passive sampling spectrophotometric method of nitrogen dioxide determination in ambient air

1991 ◽  
Vol 340 (4) ◽  
pp. 220-222 ◽  
Author(s):  
D. Krochmal ◽  
L. G�rski
2011 ◽  
Vol 6 ◽  
pp. ACI.S6969 ◽  
Author(s):  
Alaa A. Salem ◽  
Ahmed A. Soliman ◽  
Ismail A. El-Haty

A new simple and highly sensitive spectrophotometric method for determining nitrogen dioxide in air was developed. The method is based on converting atmospheric nitrogen dioxide to nitrite ions within the IVL passive samplers used for samples collection. Acidifying nitrite ions with concentrated HCl produced the peroxynitrous acid oxidizing agent which was measured using 2,2-azino-bis(3-ethyl benzothiazoline)-6-sulfonic acid-diammonium salt (ABTS) as reducing coloring agent. A parallel series of collected samples were measured for its nitrite content using a validated ion chromatographic method. The results obtained using both methods were compared in terms of their sensitivity and accuracy. Developed spectrophotometric method was shown to be one order of magnitude higher in sensitivity compared to the ion chromatographic method. Quantitation limits of 0.05 ppm and 0.55 μg/m3 were obtained for nitrite ion and nitrogen dioxid, respectively. Standard deviations in the ranges of 0.05-0.59 and 0.63-7.92 with averages of 0.27 and 3.11 were obtained for determining nitrite and nitrogen dioxide, respectively. Student-t test revealed t-values less than 6.93 and 4.40 for nitrite ions and nitrogen dioxide, respectively. These values indicated insignificant difference between the averages of the newly developed method and the values obtained by ion chromatography at 95% confidence level. Compared to continuous monitoring techniques, the newly developed method has shown simple, accurate, sensitive, inexpensive and reliable for long term monitoring of nitrogen dioxide in ambient air.


1997 ◽  
Vol 346 (1) ◽  
pp. 127-134 ◽  
Author(s):  
F. De Santis ◽  
I. Allegrini ◽  
M.C. Fazio ◽  
D. Pasella ◽  
R. Piredda

Author(s):  
Z.B. Baktybaeva ◽  
R.A. Suleymanov ◽  
T.K. Valeev ◽  
N.R. Rahmatullin ◽  
E.G. Stepanov ◽  
...  

Introduction. High density of oil-producing and refining facilities in certain areas of Bashkortostan significantly affects the environment including ambient air quality in residential areas. Materials and methods. We analyzed concentrations of airborne toxicants (sulfur and nitrogen oxides, nitrogen and carbon oxides, hydrogen sulfide, ammonia, xylenes, toluene, phenol and total suspended particles) and population health status in the cities of Ufa, Sterlitamak, Salavat, Blagoveshchensk, and the Tuymazinsky District in 2007–2016. Pearson's correlation coefficients (r) were used to establish possible relationships between medico-demographic indicators and air pollution. Results. Republican fuel and energy enterprises contributed the most to local air pollution levels. Gross emissions from such enterprises as Bashneft-Ufaneftekhim and Bashneft-Navoil reached 43.69–49.77 thousand tons of pollutants per year. The levels of some air pollutants exceeded their maximum permissible concentrations. Elevated concentrations of ammonia, total suspended particles, nitrogen dioxide, and carbon monoxide were registered most frequently. High rates of congenital abnormalities, respiratory diseases in infants (aged 0-1), general mortality and morbidity of the population were observed in some oil-producing and refining areas. The correlation analysis proved the relationship between the concentration of carbon monoxide and general disease rates in adults based on hospital admissions (r = 0.898), general incidence rates in children (r = 0.957), and blood disease rates in infants (r = 0.821). Respiratory diseases in children correlated with nitrogen dioxide emission levels (r = 0.899). Conclusions. Further development of oil-producing, petrochemical and oil-refining industries should be carried out taking into account socio-economic living conditions of the population.


2017 ◽  
Vol 10 ◽  
pp. 117862211770090 ◽  
Author(s):  
Supitchaya Tunlathorntham ◽  
Sarawut Thepanondh

The AERMOD dispersion model was evaluated for its performance in predicting 1-hour average nitrogen dioxide (NO2) concentrations in the vicinity of the largest petrochemical industrial complex in Thailand during the period between January 2012 and December 2013. Measured data from 10 ambient air monitoring stations were intensively used to compare with modeled results. Model results indicated that the tier 1 approach (full conversion of NOx to NO2) provided the most accurate results compared with other tiers. It also performed very well in predicting the extreme end of NO2 concentrations. With an absence of emission data from mobile sources, tier 1 was concluded as the most appropriate scheme for prediction of ambient NO2 ground-level concentrations in this study.


Sign in / Sign up

Export Citation Format

Share Document