Control of DNA replication and spatial distribution of defined DNA sequences in salivary gland cells of Drosophila melanogaster

Chromosoma ◽  
1985 ◽  
Vol 91 (3-4) ◽  
pp. 279-286 ◽  
Author(s):  
Martin P. Hammond ◽  
Charles D. Laird
1987 ◽  
Vol 7 (11) ◽  
pp. 4118-4121
Author(s):  
D A Talmage ◽  
M Blumenfeld

Phosphorylation of histone H1 is developmentally regulated in Drosophila spp. It cannot be detected in preblastoderm embryos or polytene salivary gland cells, but in cellular blastoderm, postblastoderm embryo, and amitotic adult head nuclei, it occurs with a frequency of roughly 4 x 10(5) molecules per nucleus. We used pulse-labeling to study the relationship between H1 synthesis and modification in cultured cells. These results reveal that the H1-associated phosphate is stable and suggest that Drosophila H1 is synthesized, translocated to the nucleus, associated with chromatin, and then phosphorylated. Partial tryptic digestion of Drosophila H1 revealed that the phosphorylation site is located within the globular, central domain of the protein. Thus, the developmentally regulated phosphorylation of Drosophila H1 presents two contrasts with previously studied H1 phosphorylation. It is not correlated with DNA replication, and it is located in the central domain of the protein.


1977 ◽  
Vol 19 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Gary D. Burkholder

The nucleolus of Drosophila melanogaster salivary gland cells, examined by whole mount electron microscopy, consists of a fibrillar core region and a peripheral region containing both fibres and granules. These regions appear to correspond to the fibrillar and granular components, respectively, seen in thin sections. Most of the nucleoli were attached to the chromocenter region of the polytene chromosomes, containing the nucleolar organizer. Bundles of relatively straight chromatin fibres, 13 nm in diameter, extended from the chromocenter into the core region of the nucleolus, however it was not possible to trace the path of these chromatin fibres through the nucleolus since they were obscured within the mass of nucleolar fibres. The nucleolar fibres in both the core and peripheral regions were irregular and knobby, with a diameter of about 15 nm. In the core region, the fibres appeared to be of considerable length and were characteristically clustered together to form small interconnected masses. The fibres in the peripheral region were relatively short and some appeared to blend with amorphous, poorly-defined pools of material. Electron dense granules 15-20 nm in diameter were also associated with this amorphous substance. It is hypothesized that the formation and subsequent packaging of the 28s rRNA may be represented by a morphological transition of the peripheral fibres, via an amorphous pool-like intermediate stage, into the nucleolar granules. The results of this study indicate that whole mount electron microscopy may be a useful alternative to thin sectioning in high resolution studies of the nucleolus.


1956 ◽  
Vol 2 (4) ◽  
pp. 407-414 ◽  
Author(s):  
Helen Gay

The structural evidence for nucleocytoplasmic interrelationships observed in electron micrographs of salivary-gland cells of third instar larvae of Drosophila melanogaster has been reviewed. It has been found that the characteristic nuclear membrane outpocketings with their adjacent highly differentiated chromosomal materials occur at one stage of larval development at a time when a new cellular function is being initiated. Preliminary cytochemical studies to characterize the materials transferred from nucleus to cytoplasm indicate that deoxyribonucleic acid occurs within the blebs. Observations on chromosome and nuclear membrane structure are also presented.


1987 ◽  
Vol 7 (11) ◽  
pp. 4118-4121 ◽  
Author(s):  
D A Talmage ◽  
M Blumenfeld

Phosphorylation of histone H1 is developmentally regulated in Drosophila spp. It cannot be detected in preblastoderm embryos or polytene salivary gland cells, but in cellular blastoderm, postblastoderm embryo, and amitotic adult head nuclei, it occurs with a frequency of roughly 4 x 10(5) molecules per nucleus. We used pulse-labeling to study the relationship between H1 synthesis and modification in cultured cells. These results reveal that the H1-associated phosphate is stable and suggest that Drosophila H1 is synthesized, translocated to the nucleus, associated with chromatin, and then phosphorylated. Partial tryptic digestion of Drosophila H1 revealed that the phosphorylation site is located within the globular, central domain of the protein. Thus, the developmentally regulated phosphorylation of Drosophila H1 presents two contrasts with previously studied H1 phosphorylation. It is not correlated with DNA replication, and it is located in the central domain of the protein.


Sign in / Sign up

Export Citation Format

Share Document