gland cells
Recently Published Documents


TOTAL DOCUMENTS

1192
(FIVE YEARS 55)

H-INDEX

61
(FIVE YEARS 4)

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1936
Author(s):  
Javier Checa ◽  
Itziar Martínez-González ◽  
Maria Maqueda ◽  
Jose Luis Mosquera ◽  
Josep M. Aran

Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing “protective” drugs. This approach could also prove useful to other respiratory pathologies.


2021 ◽  
Vol 132 ◽  
pp. 105276
Author(s):  
Ken Okabayashi ◽  
Mari Nakamura ◽  
Takanori Narita

2021 ◽  
pp. 112951
Author(s):  
Tai-Hang Liu ◽  
Xiao-Long Dong ◽  
Peng Chen ◽  
Qian Zhang ◽  
Xiao-Lin Zhou ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Shuaifei Ji ◽  
Yan Li ◽  
Laixian Zhou ◽  
Jiangbing Xiang ◽  
Huating Chen ◽  
...  

Abstract Background: Large skin defect caused severe disruption to the overall skin structure and irreversible damage of sweat gland (SG), resulting in destroy of physiological function of the skin. Reprogramming fibroblasts into sweat gland lineages may provide a promising strategy to obtain the desirable cell types for functional repair and regeneration of damaged skin. Methods: A direct reprogramming strategy of single factor ectodermal dysplasia antigen (EDA) in combination with small molecule cocktails promoting cell-fate conversion to regenerate SG cells from human dermal fibroblasts (HDFs) was developed. Quantitative PCR (qPCR), flow cytometry, calcium activity analysis, immunocytochemical analyses and starch-iodine sweat tests were used to characterize the phenotype, gene expression and function features of the induced sweat gland cells (iSGCs). Results: EDA overexpression drove HDFs toward SG lineages, and HDFs transfected with EDA acquired sweat gland cell phenotype in sweat gland conditional medium (SGM). Small-molecule cocktails favoring SG lineages greatly accelerated the SG fate program in SGM-treated HDF-EDA cells and further induced the regeneration of iSGCs. The HDFs-derived iSGCs exhibited similar phenotypical and functional features of native sweat gland cells. Eventually, in vivo transplantation experiment confirmed that iSGCs had the ability to regenerate SG structurally and functionally.Conclusion: We developed a SG reprogramming strategy to generate functional iSGCs from HDFs by using single factor EDA in combination with small molecules. The generation of iSGCs has important implications for in situ skin regeneration with restoration of sweat glands in the future.


2021 ◽  
Vol 11 (4) ◽  
pp. 41-44
Author(s):  
Samira Yaqubova

The investigation aimed to study the microscopic features of the thyroid gland under the influence of barochamber hypoxia and staphylococcal infection in the experiment. Materials and methods of the study. During the study 30 healthy adult male white rats weighing 180–200 g were used. Morphological features of the gland were studied by histological methods. Results of the study. Analysis of the study results shows that morphological changes occurring in the thyroid gland cells are more pronounced in animals of the infectious group than in animals of the hypoxia group. Thus, under the influence of infection, atrophic changes prevail in the gland tissue, and under the influence of hypoxia, hyperplasia, and hypertrophy, proliferation and differentiation of gland cells are observed. This can be considered a structural reconstruction of the gland tissue and its adaptation to new conditions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ningning Zhou ◽  
Fabienne Simonneau ◽  
Tatiana Thouroude ◽  
Laurence Hibrand-Saint Oyant ◽  
Fabrice Foucher

AbstractPrickles are common structures in plants that play a key role in defense against herbivores. In the Rosa genus, prickles are widely present with great diversity in terms of form and density. For cut rose production, prickles represent an important issue, as they can damage the flower and injure workers. Our objectives were to precisely describe the types of prickles that exist in roses, their tissues of origin and their development. We performed a detailed histological analysis of prickle initiation and development in a rose F1 population. Based on the prickle investigation of 110 roses, we proposed the first categorization of prickles in the Rosa genus. They are mainly divided into two categories, nonglandular prickles (NGPs) and glandular prickles (GPs), and subcategories were defined based on the presence/absence of hairs and branches. We demonstrated that NGPs and GPs both originate from multiple cells of the ground meristem beneath the protoderm. For GPs, the gland cells originate from the protoderm of the GP at the early developmental stage. Our findings clearly demonstrate that prickles are not modified trichomes (which originate from the protoderm). These conclusions are different from the current mainstream hypothesis. These results provide a foundation for further studies on prickle initiation and development in plants.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Naoko Okada ◽  
Tetsuya Kawakita ◽  
Masataka Ito ◽  
Kazuo Tsubota

Aquaporins (AQPs) are proteins that selectively transport water across the cell membrane. Although AQPs play important roles in secretion in the lacrimal gland, the expression and localization of AQPs have not been clarified yet. In the current study, we investigated the expression pattern of AQP family members in the murine lacrimal gland during development. Lacrimal gland tissues were harvested from E13.5 and E17.5 murine embryos and from mice 8 weeks of age (adults). Corneal and conjunctival tissues from the latter served as controls. Total RNA was isolated and analyzed for the expression of AQP family members using qPCR. The localization of AQPs in the adult lacrimal gland in adult murine lacrimal glands was also analyzed. Expression of Aqp8 and Aqp9 mRNAs was detected in the adult lacrimal gland but not in the cornea, conjunctiva, or fetal lacrimal gland. AQP8 and AQP9 and α-SMA partially colocalized around the basal regions of the acinar unit. The levels of Aqp3 mRNAs and protein were much lower in the adult lacrimal gland but were readily detected in the adult cornea and conjunctiva. Our study suggests that AQP8 and AQP9 may serve as markers for adult murine lacrimal gland, ductal, and myoepithelial cells.


Sign in / Sign up

Export Citation Format

Share Document