Heat stress in the presence of low RNA polymerase activity increases chromosome copy number in Escherichia coli

1988 ◽  
Vol 212 (2) ◽  
pp. 203-206 ◽  
Author(s):  
Elena C. Guzman ◽  
Alfonso Jimenez-Sanchez ◽  
Elisha Orr ◽  
Robert H. Pritchard
2013 ◽  
Vol 105 (12) ◽  
pp. 2676-2686 ◽  
Author(s):  
Somenath Bakshi ◽  
Renée M. Dalrymple ◽  
Wenting Li ◽  
Heejun Choi ◽  
James C. Weisshaar

1972 ◽  
Vol 130 (4) ◽  
pp. 1095-1099 ◽  
Author(s):  
Vijendra K. Singh ◽  
S. C. Sung

1. Transcription of ox brain chromatin by brain nuclear RNA polymerase II and Escherichia coli RNA polymerase was studied. 2. The soluble chromatin prepared from brain nuclei contained DNA, RNA, histone and non-histone proteins. Such chromatin preparations did not display any endogenous RNA polymerase activity, when assayed in the presence of concentrations of KCl as high as 0.4m. 3. The chromatin-templated activity of brain nuclear polymerase II was stimulated by KCl, with an optimum around 0.25m. 4. The template activity of brain chromatin for brain nuclear polymerase II and E. coli enzyme was about 20–25% of that of pure DNA. This greatly repressed templatecapacity of chromatin was probably due to the acid-soluble chromosomal proteins. 5. Brain nuclear polymerase II was 3–4 times more active with dehistonized chromatin than with pure DNA as template, whereas bacterial enzyme was almost equally active with either of these two templates, reflecting the specificity of the transcriptional control mechanisms in mammalian cells.


1982 ◽  
Vol 201 (1) ◽  
pp. 145-151 ◽  
Author(s):  
J W Dillwith ◽  
R A Lewis

Captan (N-trichloromethylthiocyclohex-4-ene-1,2-dicarboximide) was shown to inhibit RNA synthesis in vitro catalysed by Escherichia coli RNA polymerase. Incorporation of [gamma-32P]ATP and [gamma-32P]GTP was inhibited by captan to the same extent as overall RNA synthesis. The ratio of [3H]UTP incorporation to that of [gamma-32P]ATP or of [gamma-32P]GTP in control and captan-treated samples indicated that initiation was inhibited, but the length of RNA chains being synthesized was not altered by captan treatment. Limited-substrate assays in which re-initiation of RNA chains did not occur also showed that captan had no effect on the elongation reaction. Studies which measured the interaction of RNA polymerase with template DNA revealed that the binding of enzyme to DNA was inhibited by captan. Glycerol-gradient sedimentation of the captan-treated RNA polymerase indicated that the inhibition of the enzyme was irreversible and did not result in dissociation of its subunits. These data are consistent with a mechanism in which RNA polymerase activity was irreversibly altered by captan, resulting in an inability of the enzyme to bind to the template. This interaction was probably at the DNA-binding site on the polymerase and did not involve reaction of captan with the DNA template.


1978 ◽  
Vol 24 (5) ◽  
pp. 537-543 ◽  
Author(s):  
Donovan E. Johnson

The characteristics of exotoxin inhibition of deoxyribonucleic acid (DNA) dependent ribonucleic acid (RNA) polymerase isolated from Escherichia coli and Bacillus thuringiensis were investigated. RNA polymerase isolated from a variety of growth stages was partially purified and assayed using several different native and synthetic DNA templates, and exotoxin inhibition patterns were recorded for each. Although 8 to 20-h RNA polymerase extracts of E. coli retained normal sensitivity to exotoxin (50% inhibition at a concentration of 7.5 × 10−6 M exotoxin), RNA polymerase isolated from late exponential and ensuing stationary-phase cultures of B. thuringiensis were nearly 50% less sensitive than exponential RNA polymerase activity. Inhibition patterns relating culture age at the time of RNA polymerase extraction to exotoxin inhibition suggested a direct correlation between diminishing exotoxin sensitivity and sporulation. Escherichia coli RNA polymerase could be made to mimic the B. thuringiensis exotoxin inhibition pattern by removal of sigma from the holoenzyme. After passage through phosphocellulose, exotoxin inhibition of the core polymerase was 30% less than the corresponding inhibition of E. coli holoenzyme. Heterologous enzyme reconstruction and assay were not possible due to loss of activity from the B. thuringiensis preparation during phosphocellulose chromatography, apparently from the removal of magnesium. In enzyme velocity studies, inhibition with exotoxin was noncompetitive with respect to the DNA template in the RNA polymerase reaction.


Sign in / Sign up

Export Citation Format

Share Document