Yeast single copy gene URP1 is a homolog of rat ribosomal protein gene L21

1993 ◽  
Vol 23 (1) ◽  
pp. 15-18 ◽  
Author(s):  
Bernhard Jank ◽  
Martin Waldherr ◽  
Rudolf J. Schweyen
1990 ◽  
Vol 10 (12) ◽  
pp. 6544-6553
Author(s):  
J A All-Robyn ◽  
N Brown ◽  
E Otaka ◽  
S W Liebman

The accurate and efficient translation of proteins is of fundamental importance to both bacteria and higher organisms. Most of our knowledge about the control of translational fidelity comes from studies of Escherichia coli. In particular, ram (ribosomal ambiguity) mutations in structural genes of E. coli ribosomal proteins S4 and S5 have been shown to increase translational error frequencies. We describe the first sequence of a ribosomal protein gene that affects translational ambiguity in a eucaryote. We show that the yeast omnipotent suppressor SUP44 encodes the yeast ribosomal protein S4. The gene exists as a single copy without an intron. The SUP44 protein is 26% identical (54% similar) to the well-characterized E. coli S5 ram protein. SUP44 is also 59% identical (78% similar) to mouse protein LLrep3, whose function was previously unknown (D.L. Heller, K.M. Gianda, and L. Leinwand, Mol. Cell. Biol. 8:2797-2803, 1988). The SUP44 suppressor mutation occurs near a region of the protein that corresponds to the known positions of alterations in E. coli S5 ram mutations. This is the first ribosomal protein whose function and sequence have been shown to be conserved between procaryotes and eucaryotes.


1990 ◽  
Vol 10 (12) ◽  
pp. 6544-6553 ◽  
Author(s):  
J A All-Robyn ◽  
N Brown ◽  
E Otaka ◽  
S W Liebman

The accurate and efficient translation of proteins is of fundamental importance to both bacteria and higher organisms. Most of our knowledge about the control of translational fidelity comes from studies of Escherichia coli. In particular, ram (ribosomal ambiguity) mutations in structural genes of E. coli ribosomal proteins S4 and S5 have been shown to increase translational error frequencies. We describe the first sequence of a ribosomal protein gene that affects translational ambiguity in a eucaryote. We show that the yeast omnipotent suppressor SUP44 encodes the yeast ribosomal protein S4. The gene exists as a single copy without an intron. The SUP44 protein is 26% identical (54% similar) to the well-characterized E. coli S5 ram protein. SUP44 is also 59% identical (78% similar) to mouse protein LLrep3, whose function was previously unknown (D.L. Heller, K.M. Gianda, and L. Leinwand, Mol. Cell. Biol. 8:2797-2803, 1988). The SUP44 suppressor mutation occurs near a region of the protein that corresponds to the known positions of alterations in E. coli S5 ram mutations. This is the first ribosomal protein whose function and sequence have been shown to be conserved between procaryotes and eucaryotes.


1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

Genomics ◽  
1998 ◽  
Vol 48 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Yu-Ker Wang ◽  
Luis A. Pérez-Jurado ◽  
Uta Francke

2021 ◽  
Vol 9 (8) ◽  
pp. 1610
Author(s):  
Christian Klotz ◽  
Elke Radam ◽  
Sebastian Rausch ◽  
Petra Gosten-Heinrich ◽  
Toni Aebischer

Giardiasis in humans is a gastrointestinal disease transmitted by the potentially zoonotic Giardia duodenalis genotypes (assemblages) A and B. Small wild rodents such as mice and voles are discussed as potential reservoirs for G. duodenalis but are predominantly populated by the two rodent species Giardia microti and Giardia muris. Currently, the detection of zoonotic and non-zoonotic Giardia species and genotypes in these animals relies on cumbersome PCR and sequencing approaches of genetic marker genes. This hampers the risk assessment of potential zoonotic Giardia transmissions by these animals. Here, we provide a workflow based on newly developed real-time PCR schemes targeting the small ribosomal RNA multi-copy gene locus to distinguish G. muris, G. microti and G. duodenalis infections. For the identification of potentially zoonotic G. duodenalis assemblage types A and B, an established protocol targeting the single-copy gene 4E1-HP was used. The assays were specific for the distinct Giardia species or genotypes and revealed an analytical sensitivity of approximately one or below genome equivalent for the multi-copy gene and of about 10 genome equivalents for the single-copy gene. Retesting a biobank of small rodent samples confirmed the specificity. It further identified the underlying Giardia species in four out of 11 samples that could not be typed before by PCR and sequencing. The newly developed workflow has the potential to facilitate the detection of potentially zoonotic and non-zoonotic Giardia species in wild rodents.


1988 ◽  
Vol 16 (11) ◽  
pp. 4915-4926 ◽  
Author(s):  
F. Rafti ◽  
G. Gargiulo ◽  
A. Manzi ◽  
C. Malva ◽  
G. Grossi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document