Influence of muscle activation dynamics on reaction time in the elderly

1994 ◽  
Vol 69 (4) ◽  
pp. 344-349 ◽  
Author(s):  
R. D. Lewis ◽  
J. M. M. Brown
1997 ◽  
Vol 25 (4) ◽  
pp. 345-352 ◽  
Author(s):  
Jeffrey Goldstein ◽  
Lara Cajko ◽  
Mark Oosterbroek ◽  
Moniek Michielsen ◽  
Oscar Van Houten ◽  
...  

This study examined the effects of playing video games (Super Tetris) on the reaction time, cognitive/perceptual adaptability, and emotional well-being of 22 noninstitutionalized elderly people aged 69 to 90. Volunteers in an elderly community in the Netherlands were randomly assigned to a videogameplaying experimental group or a nonplaying control group. The televisions of the 10 videogame players were provided with Nintendo SuperNes systems. Participants played Super Tetris 5 hours a week for 5 weeks, and maintained a log of their play. Before and after this play period, measures of reaction time (Sternberg Test; Steinberg, 1969), cognitive/perceptual adaptability (Stroop Color Word Test; Stroop, 1935), and emotional well-being (self-report questionnaire) were administered. Playing video games was related to a significant improvement in the Sternberg reaction time task, and to a relative increase in selfreported well-being. On the Stroop Color Word Test, both the experimental and control groups improved significantly, but the difference between groups was not statistically significant. The videogame-playing group had faster reaction times and felt a more positive sense of well-being compared to their nonplaying counterparts. Consistent with previous research on video games and the elderly, the present study finds the strongest effects on measures of reaction time, and the weakest effects on cognitive performance measures. Explanations and alternative interpretations of these findings are discussed.


2018 ◽  
Vol 120 (4) ◽  
pp. 2059-2065
Author(s):  
Stefan Delmas ◽  
Agostina Casamento-Moran ◽  
Seoung Hoon Park ◽  
Basma Yacoubi ◽  
Evangelos A. Christou

Reaction time (RT) is the time interval between the appearance of a stimulus and initiation of a motor response. Within RT, two processes occur, selection of motor goals and motor planning. An unresolved question is whether perturbation to the motor planning component of RT slows the response and alters the voluntary activation of muscle. The purpose of this study was to determine how the modulation of muscle activity during an RT response changes with motor plan perturbation. Twenty-four young adults (20.5 ±1.1 yr, 13 women) performed 15 trials of an isometric RT task with ankle dorsiflexion using a sinusoidal anticipatory strategy (10–20% maximum voluntary contraction). We compared the processing part of the RT and modulation of muscle activity from 10 to 60 Hz of the tibialis anterior (primary agonist) when the stimulus appeared at the trough or at the peak of the sinusoidal task. We found that RT ( P = 0.003) was longer when the stimulus occurred at the peak compared with the trough. During the time of the reaction, the electromyography (EMG) power from 10 to 35 Hz was less at the peak than the trough ( P = 0.019), whereas the EMG power from 35 to 60 Hz was similar between the peak and trough ( P = 0.92). These results suggest that perturbation to motor planning lengthens the processing part of RT and alters the voluntary activation of the muscle by decreasing the relative amount of power from 10 to 35 Hz. NEW & NOTEWORTHY We aimed to determine whether perturbation to motor planning would alter the speed and muscle activity of the response. We compared trials when a stimulus appeared at the peak or trough of an oscillatory reaction time task. When the stimulus occurred at the trough, participants responded faster, with greater force, and less EMG power from 10-35 Hz. We provide evidence that motor planning perturbation slows the response and alters the voluntary activity of the muscle.


2009 ◽  
Vol 21 (4) ◽  
pp. 311-316 ◽  
Author(s):  
Ming Hu ◽  
Hitoshi Maruyama ◽  
Sumikazu Akiyama

2018 ◽  
Vol 5 (3) ◽  
pp. 106-112
Author(s):  
Reihaneh Ravari ◽  
Hamid Reza Kobravi

Background: The goal of this study is to design a model in order to predict the muscle activation pattern because the muscle activation patterns contain valuable information about the muscle dynamics and movement patterns. Therefore, the goal of the presentation of this neural model is to identify the desired muscle activation patterns by Hopf chaotic oscillator during walking. Since the knee muscles activation has a significant effect on the movement pattern during walking, the main concentration of this study is to identify the knee muscles activation dynamics using a modeling technique. Methods: The electromyography (EMG) recording obtained from 5 healthy subjects that electrodes positioned on the tibialis-anterior (TA) and rectus femoris muscles on every 2 feet. In the proposed model, along with the chaotic oscillator, a fuzzy compensator was designed to face the unmolded dynamics. In fact, on the condition, the observed difference between the desired and actual activation patterns violate some specific quantitative ranges, the fuzzy compensator based on predefined rules modify the activity pattern produced by the Hopf oscillator. Results: Some quantitative measures used to evaluate the results. According to the achieved results, the proposed model could generate the trajectories, dynamics of which are similar to the muscle activation dynamics of the studied muscles. In this model, the generated activity pattern by the proposed model cannot follow the desired activity of the TA muscle as well as rectus femoris muscle. Conclusion: The similarity between the generated activity pattern by the model and the activation dynamics of Rectus- Femoris muscle was more in comparison with the similarity observed between activation pattern of Tibialis- Anterior and the pattern generated by the model. In other words, based on the recorded human data, the activation pattern of the Rectus- Femoris is more similar to a rhythmic pattern.


2019 ◽  
Author(s):  
Meizhen Huang ◽  
Kit-lun Yick ◽  
Sun-pui Ng ◽  
Joanne Yip ◽  
Roy Cheung

Abstract Background: Diminished somatosensory function and lower plantar cutaneous sensitivity have been identified as a critical age-related change, which is related to postural instability in the older population. Footwear is suggested that can modulate the postural stability by altering the interface between the foot sole and the ground. However, it is unclear whether this footwear effect could also influence lower limb muscle activation for the elderly. This study aimed to investigate the footwear insole texture and supporting surface condition on static postural stability and lower limb muscle activation for healthy older people. Methods: This is a single-session study with repeated measurements. Twenty-three healthy older female stood on the firm (i.e., concrete floor) and foam surfaces with their eyes open in the three footwear conditions, namely barefoot, plain shoes and nodulous insole shoes, for 30 seconds. Static postural sway and muscle activation of biceps femoris (BF), vastus lateralis (VL), tibialis anterior (TA), and lateral gastrocnemius (LG) of the dominant leg were measured during each testing condition. Results: compared to firm surface, standing on the foam could significantly increase the body sway and lower limb muscle activation (p<0.05); compared to barefoot, when standing on the foam, wearing footwear significantly decreased the VL and TA muscle activation and minimize the postural sway in ML and AP direction, while the influence is larger for the nodulous shoes compared to the plain shoes. A positive correlation was observed between the lower limb muscle activation and AP (r=0.327-0.389, p<0.001) and total sway path length (r=0.317-0.427, p<0.001). Conclusions: footwear could improve the postural stability and decease the fall risk comparing to barefoot when the somatosensory input is in disturbance, while the improvement is larger when wearing nodulous insole footwear for the elderly.


Author(s):  
Moemen Hussein ◽  
Said Shebl ◽  
Rehab Elnemr ◽  
Hesham Elkaranshawy

Abstract Hill-type models are frequently used in biomechanical simulations. They are attractive for their low computational cost and close relation to commonly measured musculotendon parameters. Still, more attention is needed to improve the activation dynamics of the model specifically because of the nonlinearity observed in the EMG-Force relation. Moreover, one of the important and practical questions regarding the assessment of the model's performance is how adequately can the model simulate any fundamental type of human movement without modifying model parameters for different tasks? This paper tries to answer this question by proposing a simple physiologically based activation dynamics model. The model describes the ?kinetics of the calcium dynamics while activating and deactivating the muscle contraction process. Hence, it allowed simulating the recently discovered role of store-operated calcium entry (SOCE) channels as immediate counter-flux to calcium loss across the tubular system during excitation-contraction coupling. By comparing the ability to fit experimental data without readjusting the parameters, the proposed model has proven to have more steady performance than phenomenologically based models through different submaximal isometric contraction levels. This model indicates that more physiological insights is key for improving Hill-type model performance.


2021 ◽  
Vol 15 (3) ◽  
pp. 153-166
Author(s):  
Milena A. Dos Santos ◽  
Felipe P. Carpes

BACKGROUND: Dissociation by music may impact the rate of perceived exertion (RPE), which is an indicator of internal loads during exercise. However, it is not clear how music affects the RPE, neuromuscular, and cognitive responses to exercise. AIM: To determine whether listening to preferred music during indoor endurance exercise influences RPE, neuromuscular, and cognitive responses in healthy individuals. METHOD: Thirteen healthy adults performed sessions of prolonged indoor cycling at moderate intensity while listening or not to preferred music. Reaction time, selective attention, and memory were evaluated before, during, and/or after the exercise sessions. RPE, heart rate, muscle activation, pedaling torque, and cadence were recorded during the exercises. RESULTS: RPE (P = 0.004, d = 0.40), heart rate (P = 0.048, d = 0.53) and cadence (P = 0,043; d = 0.51) were higher in the music session compared to no music. Selective attention (P = 0.233), simple reaction time (P = 0.360), working and short-term memory (P > 0.05), as well as torque (P = 0.262) and muscle activation (RMS and MDF, P > 0.05) did not differ between music and no music sessions. CONCLUSION: Indoor cycling while listening to preferred music elicited higher internal loads, which we consider a result of higher cardiovascular demand. However, the effects of music on neuromuscular and cognitive responses were not evident. We conclude that music can be helpful to improve demand during indoor exercise.


Author(s):  
J. Proctor ◽  
R. P. Kukillaya ◽  
P. Holmes

In earlier work, we have developed an integrated model for insect locomotion that includes a central pattern generator (CPG), nonlinear muscles, hexapedal geometry and a representative proprioceptive sensory pathway. Here, we employ phase reduction and averaging theory to replace 264 ordinary differential equations (ODEs), describing bursting neurons in the CPG, their synaptic connections to motoneurons, muscle activation dynamics and sensory neurons, with 24 one-dimensional phase oscillators that describe motoneuronal activation of agonist–antagonist muscle pairs driving the jointed legs. Reflexive feedback is represented by stereotypical spike trains with rates proportional to joint torques, which change phase relationships among the motoneuronal oscillators. Restriction to the horizontal plane, neglect of leg mass and use of Hill-type muscle models yield a biomechanical body–limb system with only three degrees of freedom, and the resulting hybrid dynamical system involves 30 ODEs: reduction by an order of magnitude. We show that this reduced model captures the dynamics of unperturbed gaits and the effects of an impulsive perturbation as accurately as the original one. Moreover, the phase response and coupling functions provide an improved understanding of reflexive feedback mechanisms.


Sign in / Sign up

Export Citation Format

Share Document