Rates of nitrogen fixation on coral reefs across the continental shelf of the central Great Barrier Reef

1984 ◽  
Vol 80 (3) ◽  
pp. 255-262 ◽  
Author(s):  
C. R. Wilkinson ◽  
D. McB. Williams ◽  
P. W. Sammarco ◽  
R. W. Hogg ◽  
L. A. Trott
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katharina E. Fabricius ◽  
Craig Neill ◽  
Erik Van Ooijen ◽  
Joy N. Smith ◽  
Bronte Tilbrook

Abstract Coral reefs are highly sensitive to ocean acidification due to rising atmospheric CO2 concentrations. We present 10 years of data (2009–2019) on the long-term trends and sources of variation in the carbon chemistry from two fixed stations in the Australian Great Barrier Reef. Data from the subtropical mid-shelf GBRWIS comprised 3-h instrument records, and those from the tropical coastal NRSYON were monthly seawater samples. Both stations recorded significant variation in seawater CO2 fugacity (fCO2), attributable to seasonal, daytime, temperature and salinity fluctuations. Superimposed over this variation, fCO2 progressively increased by > 2.0 ± 0.3 µatm year−1 at both stations. Seawater temperature and salinity also increased throughout the decade, whereas seawater pH and the saturation state of aragonite declined. The decadal upward fCO2 trend remained significant in temperature- and salinity-normalised data. Indeed, annual fCO2 minima are now higher than estimated fCO2 maxima in the early 1960s, with mean fCO2 now ~ 28% higher than 60 years ago. Our data indicate that carbonate dissolution from the seafloor is currently unable to buffer the Great Barrier Reef against ocean acidification. This is of great concern for the thousands of coral reefs and other diverse marine ecosystems located in this vast continental shelf system.


2010 ◽  
Vol 61 (4) ◽  
pp. 389 ◽  
Author(s):  
R. J. Bannister ◽  
C. N. Battershill ◽  
R. de Nys

Effects of anthropogenic inputs on corals are well documented in regard to the ecology of coral reefs. However, responses to anthropogenic changes by sponge assemblages, also a key component of coral reefs, have received less attention. This paper quantifies differences in abundance, size and distribution of the sponge Rhopaloeides odorabile across a cross-shelf reef system on the central Great Barrier Reef (GBR) from neritic to outer reef oligotrophic waters. Benthic surveys were conducted in reef habitats spatially separated across the continental shelf. The mean abundance of R. odorabile increased significantly with increasing distance from coastal habitats, with 3.5 times more individuals offshore than inshore. In contrast, the mean size (volume) of R. odorabile individuals did not differ significantly across the cross-shelf reef system. On inshore reefs, R. odorabile was restricted to depths <10 m, with a preference for shallower depths (5–6 m). On offshore reefs, R. odorabile was found as deep as 15 m and predominantly between 9 and 10 m. These demographic changes in R. odorabile populations, together with a general population size reduction from surveys made decades prior, suggest a response to anthropogenic impacts across the continental shelf of the central GBR.


2010 ◽  
Vol 61 (9) ◽  
pp. 999 ◽  
Author(s):  
C. Cvitanovic ◽  
A. S. Hoey

The removal of macroalgae by herbivores is fundamental to the long-term persistence of coral reefs. Variation in macroalgal browsing has been documented across a range of spatial scales on coral reefs; however, few studies have examined the factors that influence within-habitat rates of herbivory. The aim of the present study was to quantify herbivory on two species of Sargassum across three bays on an inshore island in the central Great Barrier Reef (GBR), and to determine whether these removal rates were related to the benthic composition or herbivorous fish communities. Removal rates of Sargassum differed significantly among bays, with removal rates in the southern bay (66.9–83.0% per 3 h) being approximately double that of the two other bays (29.2–38.5% per 3 h). The removal rates displayed a direct relationship with the benthic community structure, in particular the cover of macroalgae and live plate corals. Although it is difficult to determine whether these relationships are related to the availability of food resources or the structural complexity of the substratum, they highlight the potential influence of benthic composition on ecological processes. Quantifying and understanding the drivers of herbivory across a range of spatial scales is essential to the future management of coral reefs.


1983 ◽  
Vol 34 (1) ◽  
pp. 23 ◽  
Author(s):  
E Wolanski ◽  
AF Bennett

Winds and atmospheric pressure, sea level and water currents were measured at several locations over the continental shelf, both east and west of the Great Barrier Reef, between 14.5�s. and 20�S., from June to November 1980. The dominant wind direction changed from westward over the Coral Sea to north- westward (roughly parallel to the shore) over the shelf. A strong non-tidal low-frequency signal in all sea- level and longshore current data was found, highly coherent from site to site and strongly correlated with the longshore wind component over the shelf, though not with the atmospheric pressure. A model of wind- driven barotropic shelf waves is used to explain a number of observations, such as the invariance of temporal fluctuations of longshore current with distance from shore, and the northward longshore propagation of oceanic disturbances at a speed equal to twice that of the first-mode barotropic free shelf wave, a speed one order of magnitude smaller than that of the wind system. The low-frequency current fluctuations resulted in large water displacements, up and down the coast. Low-frequency cross-shelf currents were much weaker and less coherent. Two upwelling mechanisms are internal tides and internal Kelvin waves coupled to the barotropic shelf waves.


Sign in / Sign up

Export Citation Format

Share Document