seawater acidification
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 57)

H-INDEX

38
(FIVE YEARS 7)

2021 ◽  
Vol 8 ◽  
Author(s):  
Hongxia Zhang ◽  
Mingshan Song ◽  
Lili Wang ◽  
Anguo Zhang ◽  
Xiaolong Yang ◽  
...  

Seawater acidification and warming have been found to affect the early life of many marine organisms, but their effects on the microbial community in the environment related to the early development stage of aquaculture species have been rarely investigated. To understand how seawater acidification and warming impact the microbial community in aquaculture systems, we designed four microcosms to monitor and characterize the microbial composition on the corrugated plates in the Apostichopus japonicus culture tanks during its post-settlement stage. High-throughput 16S rRNA sequencing revealed that the bacterial community composition varied significantly in different periods of incubation. The bacterial diversity and community composition were obviously changed by seawater acidification and warming in the early period and then tended to revert to the level of the control group. Acidification significantly increased the relative abundance of dominant families Rhodobacteraceae and Flavobacteriaceae in the early period, suggesting that microbiota could increase the abundance of predominant taxa to adapt to increased CO2 concentration and reconstruct a stable community structure. No interaction effect of both factors was observed in the combined group. Results reveal that the microbial communities on the corrugated plates in A. japonicus culture tank were affected in the early period of incubation, and could then acclimatize to the increased CO2 and temperature. This study provides new insights into the variation and adaptation responses of the microbiota in aquaculture systems to seawater acidification and warming.


2021 ◽  
Vol 173 ◽  
pp. 113145
Author(s):  
Hui Wei ◽  
Zhuoan Bai ◽  
Dongmei Xie ◽  
Yao Chen ◽  
Minghua Wang

2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Liu ◽  
Yanqun Wang ◽  
Yuanyuan Li ◽  
Yijun Li ◽  
You Wang ◽  
...  

Seawater acidification and nutrient alteration are two dominant environmental factors in coastal environments that influence the dynamics and succession of marine microalgae. However, the impacts of their combination have seldom been recorded. A simulated experimental system was set up to mimic the effects of elevated acidification on a bloom-forming dinoflagellate, Karenia mikimotoi, exposed to different nutrient conditions, and the possible mechanism was discussed. The results showed that acidification at different pH levels of 7.6 or 7.4 significantly influenced microalgal growth (p<0.05) compared with the control at pH 8.0. Mitochondria, the key sites of aerobic respiration and energy production, were impaired in a pH-dependent manner, and a simultaneous alteration of reactive oxygen species (ROS) production occurred. Cytochrome c oxidase (COX) and citrate synthase (CS), two mitochondrial metabolism-related enzymes, were actively induced with acidification exposure, suggesting the involvement of the mitochondrial pathway in coping with acidification. Moreover, different nutrient statuses indicated by various N:P ratios of 7:1 (N limitation) and 52:1 (P limitation) dramatically altered the impacts of acidification compared with those exposed to an N:P ratio of 17:1 (control), microalgal growth at pH 7.4 was obviously accelerated with the elevation of the nutrient ratio compared to that at pH 8.1 (p<0.05), and nutrient limitations seemed beneficial for growth in acidifying conditions. The production of alkaline phosphatase (AP) and acid phosphatase (AcP), an effective index indicating the microalgal growth status, significantly increased at the same time (p<0.05), which further supported this speculation. However, nitrate reductase (NR) was slightly inhibited. Hemolytic toxin production showed an obvious increase as the N:P ratio increased when exposed to acidification. Taken together, mitochondrial metabolism was suspected to be involved in the process of coping with acidification, and nutrient alterations, especially P limitation, could effectively alleviate the negative impacts induced by acidification. The obtained results might be a possible explanation for the competitive fitness of K. mikimotoi during bloom development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Guo ◽  
Bin Zhou ◽  
Tianli Sun ◽  
Yaya Zhang ◽  
Yongshun Jiang ◽  
...  

As ocean acidification (OA) is gradually increasing, concerns regarding its ecological impacts on marine organisms are growing. Our previous studies have shown that seawater acidification exerted adverse effects on physiological processes of the blue mussel Mytilus edulis, and the aim of the present study was to obtain energy-related evidence to verify and explain our previous findings. Thus, the same acidification system (pH: 7.7 or 7.1; acidification method: HCl addition or CO2 enrichment; experimental period: 21d) was set up, and the energy-related changes were assessed. The results showed that the energy charge (EC) and the gene expressions of cytochrome C oxidase (COX) reflecting the ATP synthesis rate increased significantly after acidification treatments. What’s more, the mussels exposed to acidification allocated more energy to gills and hemocytes. However, the total adenylate pool (TAP) and the final adenosine triphosphate (ATP) in M. edulis decreased significantly, especially in CO2 treatment group at pH 7.1. It was interesting to note that, TAP, ATP, and COXs gene expressions in CO2 treatment groups were all significantly lower than that in HCl treatment groups at the same pH, verifying that CO2-induced acidification exhibited more deleterious impacts on M. edulis, and ions besides H+ produced by CO2 dissolution were possible causes. In conclusion, energy-related changes in M. edulis responded actively to seawater acidification and varied with different acidification conditions, while the constraints they had at higher acidification levels suggest that M. edulis will have a limited tolerance to increasing OA in the future.


Author(s):  
Mathilde Godefroid ◽  
Robin Arçuby ◽  
Yann Lacube ◽  
Benoit Espiau ◽  
Sam Dupont ◽  
...  

Abstract Responses of corals to seawater acidification have been extensively studied. Sensitivity varies widely between species, highlighting the need to avoid extrapolation from one to another to get an accurate understanding of coral community responses. We tested the responses of seven coral species (Acropora cytherea, Acropora hyacinthus, Acropora pulchra, Leptastrea pruinosa, Montipora grisea, Pavona cactus, Pocillopora verrucosa) from the Mo'orea lagoon to a 48-day exposure to three pH scenarios (pH 7.95, 7.7 and 7.3). Tissue necrosis, mortality, growth rates, photophysiological performances and colour index were recorded. Few significant differences were noted between pH 7.95 and 7.7, but species-specific responses were observed at pH 7.3. While our data do not allow identification of the mechanisms behind this diversity in response between species inhabiting the same environment, it can exclude several hypotheses such as local adaptation, skeletal type, corallum morphology or calcification rate as sole factors determining coral sensitivity to pH.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 629
Author(s):  
Yuanyuan Li ◽  
Zhengli Zhou ◽  
Yijun Li ◽  
Yanqun Wang ◽  
Mengxue Xu ◽  
...  

Impacts of ocean acidification (OA) on noncalcifying organisms and the possibly responsible mechanism have aroused great research interests with the intensification of global warming. The present study focused on a noxious, noncalcifying, bloom-forming dinoflagellate, Karenia mikimotoi (K. mikimotoi), and its variation of growth patterns exposed to different periods of seawater acidification with stressing gradients was discussed. The dinoflagellates under short-time acidifying stress (2d) with different levels of CO2 presented significant growth inhibition (p < 0.05). The cell cycle was obviously inhibited at S phase, and the photosynthetic carbon fixation was also greatly suppressed (p < 0.05). Apoptosis was observed and the apoptotic rate increased with the increment of pCO2. Similar tendencies were observed in the key components of mitochondrial apoptotic pathway (the mitochondrial membrane potential (MMP), Caspase-3 and -9, and Bax/Bcl-2 ratio). However, under prolonged stressing time (8 d and 15 d), the growth of dinoflagellates was recovered or even stimulated, the photosynthetic carbon fixation was significantly increased (p < 0.05), the cell cycle of division presented little difference with those in the control, and no apoptosis was observed (p > 0.05). Besides, acidification adjusted by HCl addition and CO2 enrichment resulted in different growth performances, while the latter had a more negative impact. The results of present study indicated that (1) the short-time exposure to acidified seawater led to reduced growth performance via inducing apoptosis, blocking of cell cycle, and the alteration in photosynthetic carbon fixation. (2) K. mikimotoi had undergone adaptive changes under long-term exposure to CO2 induced seawater acidification. This further demonstrated that K. mikimotoi has strong adaptability in the face of seawater acidification, and this may be one of the reasons for the frequent outbreak of red tide. (3) Ions that dissociated by the dissolved CO2, instead of H+ itself, were more important for the impacts induced by the acidification. This work thus provides a new perspective and a possible explanation for the dominance of K. mikimotoi during the occurrence of HABs.


Sign in / Sign up

Export Citation Format

Share Document