Experimental myotonia in mammalian skeletal muscle: changes in membrane properties

1972 ◽  
Vol 331 (4) ◽  
pp. 324-334 ◽  
Author(s):  
R. R�del ◽  
J. Senges
Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 404
Author(s):  
Gabriela de Matuoka e Chiocchetti ◽  
Leisa Lopes-Aguiar ◽  
Natália Angelo da Silva Miyaguti ◽  
Lais Rosa Viana ◽  
Carla de Moraes Salgado ◽  
...  

Cancer cachexia is a severe wasting condition that needs further study to find ways to minimise the effects of damage and poor prognosis. Skeletal muscle is the most impacted tissue in cancer cachexia; thus, elucidation of its metabolic alterations could provide a direct clue for biomarker research and be applied to detect this syndrome earlier. In addition, concerning the significant changes in the host metabolism across life, this study aimed to compare the metabolic muscle changes in cachectic tumour-bearing hosts at different ages. We performed 1H-NMR metabolomics in the gastrocnemius muscle in weanling and young adult Walker-256 tumour-bearing rats at different stages of tumour evolution (initial, intermediate, and advanced). Among the 49 metabolites identified, 24 were significantly affected throughout tumour evolution and 21 were significantly affected regarding animal age. The altered metabolites were mainly related to increased amino acid levels and changed energetic metabolism in the skeletal muscle, suggesting an expressive catabolic process and diverted energy production, especially in advanced tumour stages in both groups. Moreover, these changes were more severe in weanling hosts throughout tumour evolution, suggesting the distinct impact of cancer cachexia regarding the host’s age, highlighting the need to adopting the right animal age when studying cancer cachexia.


2002 ◽  
Vol 27 (4) ◽  
pp. 423-448 ◽  
Author(s):  
Dirk Pette

Mammalian skeletal muscle fibers display a great adaptive potential. This potential results from the ability of muscle fibers to adjust their molecular, functional, and metabolic properties in response to altered functional demands, such as changes in neuromuscular activity or mechanical loading. Adaptive changes in the expression of myofibrillar and other protein isoforms result in fiber type transitions. These transitions occur in a sequential order and encompass a spectrum of pure and hybrid fibers. Depending on the quality, intensity, and duration of the alterations in functional demand, muscle fibers may undergo functional transitions in the direction of slow or fast, as well as metabolic transitions in the direction of aerobic-oxidative or glycotytic. The maximum range of possible transitions in either direction depends on the fiber phenotype and is determined by its initial location in the fiber spectrum. Key words: Ca-sequestering proteins, energy metabolism, fiber type transition, myofibrillar protein isofonns, myosin, neuromuscular activity


2018 ◽  
Vol 19 (6) ◽  
pp. 519-536 ◽  
Author(s):  
Rachel McCormick ◽  
Aphrodite Vasilaki

2001 ◽  
Vol 79 (12) ◽  
pp. 996-1006 ◽  
Author(s):  
Michael I Lindinger ◽  
Thomas J Hawke ◽  
Lisa Vickery ◽  
Laurie Bradford ◽  
Shonda L Lipskie

The contributions of Na+/K+-ATPase, K+ channels, and the NaK2Cl cotransporter (NKCC) to total and unidirectional K+ flux were determined in mammalian skeletal muscle at rest. Rat hindlimbs were perfused in situ via the femoral artery with a bovine erythrocyte perfusion medium that contained either 86Rb or 42K, or both simultaneously, to determine differences in ability to trace unidirectional K+ flux in the absence and presence of K+-flux inhibitors. In most experiments, the unidirectional flux of K+ into skeletal muscle (JinK) measured using 86Rb was 8–10% lower than JinK measured using 42K. Ouabain (5 mM) was used to inhibit Na+/K+-ATPase activity, 0.06 mM bumetanide to inhibit NKCC activity, 1 mM tetracaine or 0.5 mM barium to block K+ channels, and 0.05 mM glybenclamide (GLY) to block ATP-sensitive K+ (KATP) channels. In controls, JinK remained unchanged at 0.31 ± 0.03 µmol·g–1·min–1 during 55 min of perfusion. The ouabain-sensitive Na+/K+-ATPase contributed to 50 ± 2% of basal JinK, K+ channels to 47 ± 2%, and the NKCC to 12 ± 1%. GLY had minimal effect on JinK, and both GLY and barium inhibited unidirectional efflux of K+ (JoutK) from the cell through K+ channels. Combined ouabain and tetracaine reduced JinK by 55 ± 2%, while the combination of ouabain, tetracaine, and bumetanide reduced JinK by 67 ± 2%, suggesting that other K+-flux pathways may be recruited because the combined drug effects on inhibiting JinK were not additive. The main conclusions are that the NKCC accounted for about 12% of JinK, and that KATP channels accounted for nearly all of the JoutK, in resting skeletal muscle in situ.Key words: sodium potassium chloride cotransporter, NKCC, Na+/K+-ATPase, potassium channels, potassium transport, in situ rat hindlimb.


Sign in / Sign up

Export Citation Format

Share Document