Cosmic-ray fluctuations and interplanetary magnetic fields

1993 ◽  
Vol 199 (1) ◽  
pp. 125-132 ◽  
Author(s):  
K. Kudela ◽  
M. Slivka ◽  
M. Stehl�k ◽  
A. Geranios
1958 ◽  
Vol 6 ◽  
pp. 355-376
Author(s):  
J. A. Simpson

The principal characteristics for changes of cosmic ray intensity as a function of time and primary particle energy are reviewed for those intensity variations which are thought to be of non-terrestrial origin. These variations are either (a) temporary increases of cosmic ray intensity arising from thede novoproduction of cosmic ray particles in the vicinity of the sun in association with some solar flares, or (b) the modulation of extra-solar cosmic radiation within the interplanetary volume by a modulation mechanism related to solar activity.The study of these variations for low-energy cosmic ray particles is also a unique tool for the investigation of interplanetary magnetic fields and other properties of interplanetary space. As an example, the cosmic ray events associated with the giant solar flare of 23 February 1956 have been studied. The experimental evidence shows that interplanetary magnetic fields must exist for the storage and redistribution of the solar flare cosmic ray particles. A more specific model indicates that disordered magnetic fields lie mainly beyond the orbit of the earth and that diffusion through these irregular magnetic fields is the prominent mechanism for particle storage. In addition, this cosmic ray intensity increase was fortunately superposed in such a way upon a change of intensity arising from a modulation mechanism that it is possible to restrict the kinds of models which account for modulation of cosmic ray intensity within the interplanetary volume.


1970 ◽  
Vol 39 ◽  
pp. 168-183
Author(s):  
E. N. Parker

The topic of this presentation is the origin and dynamical behavior of the magnetic field and cosmic-ray gas in the disk of the Galaxy. In the space available I can do no more than mention the ideas that have been developed, with but little explanation and discussion. To make up for this inadequacy I have tried to give a complete list of references in the written text, so that the interested reader can pursue the points in depth (in particular see the review articles Parker, 1968a, 1969a, 1970). My purpose here is twofold, to outline for you the calculations and ideas that have developed thus far, and to indicate the uncertainties that remain. The basic ideas are sound, I think, but, when we come to the details, there are so many theoretical alternatives that need yet to be explored and so much that is not yet made clear by observations.


1995 ◽  
Vol 45 (9) ◽  
pp. 767-775
Author(s):  
Y. I. Fedorov ◽  
B. A. Shakhov ◽  
M. Stehlík

2009 ◽  
Vol 114 (A7) ◽  
pp. n/a-n/a ◽  
Author(s):  
A. Grocott ◽  
S. V. Badman ◽  
S. W. H. Cowley ◽  
S. E. Milan ◽  
J. D. Nichols ◽  
...  

2015 ◽  
Vol 33 (5) ◽  
pp. 519-524 ◽  
Author(s):  
B. T. Tsurutani ◽  
R. Hajra ◽  
E. Echer ◽  
J. W. Gjerloev

Abstract. We examine particularly intense substorms (SML ≤–2500 nT), hereafter called "supersubstorms" or SSS events, to identify their nature and their magnetic storm dependences. It is found that these intense substorms are typically isolated events and are only loosely related to magnetic storms. SSS events can occur during super (Dst ≤–250 nT) and intense (−100 nT ≥ Dst >–250) magnetic storms. SSS events can also occur during nonstorm (Dst ≥–50 nT) intervals. SSSs are important because the strongest ionospheric currents will flow during these events, potentially causing power outages on Earth. Several SSS examples are shown. SSS events appear to be externally triggered by small regions of very high density (~30 to 50 cm−3) solar wind plasma parcels (PPs) impinging upon the magnetosphere. Precursor southward interplanetary magnetic fields are detected prior to the PPs hitting the magnetosphere. Our hypothesis is that these southward fields input energy into the magnetosphere/magnetotail and the PPs trigger the release of the stored energy.


2017 ◽  
Vol 469 (2) ◽  
pp. 1849-1860 ◽  
Author(s):  
J. H. Matthews ◽  
A. R. Bell ◽  
K. M. Blundell ◽  
A. T. Araudo

2009 ◽  
Vol 36 (18) ◽  
Author(s):  
J.-H. Shue ◽  
J.-K. Chao ◽  
P. Song ◽  
J. P. McFadden ◽  
A. Suvorova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document