Post-Newtonian approximation of gravitation theory in flat space-time

1992 ◽  
Vol 189 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Walter Petry
1944 ◽  
Vol 30 (10) ◽  
pp. 324-334 ◽  
Author(s):  
G. D. Birkhoff
Keyword(s):  

2018 ◽  
Vol 191 ◽  
pp. 08004
Author(s):  
A.D. Dolgov ◽  
S.I. Godunov ◽  
A.S. Rudenko

We study the evolution of thick domain walls in the expanding universe. We have found that the domain wall evolution crucially depends on the time-dependent parameter C(t) = 1/(H(t)δ0)2, where H(t) is the Hubble parameter and δ0 is the width of the wall in flat space-time. For C(t) > 2 the physical width of the wall, a(t)δ(t), tends with time to constant value δ0, which is microscopically small. Otherwise, when C(t) ≤ 2, the wall steadily expands and can grow up to a cosmologically large size.


1999 ◽  
Vol 14 (18) ◽  
pp. 2905-2920 ◽  
Author(s):  
REMO GARATTINI

A one-loop correction of the quasilocal energy in the Schwarzschild background, with flat space as a reference metric, is performed by means of a variational procedure in the Hamiltonian framework. We examine the graviton sector in momentum space, in the lowest possible state. An application to the black hole pair creation via the Casimir energy is presented. Implications on the foamlike scenario are discussed.


Sign in / Sign up

Export Citation Format

Share Document