Oliver Piguet, Klaus Sibold: Renormalized Supersymmetry. The Perturbation Theory ofN = 1 Supersymmetric Theories in Flat Space-Time. Birkhäuser, Boston, Basel, Stuttgart 1986, ISBN 0-8176-3346-4 und 3-7643-3346-4, Preis: sfr 98.-

1987 ◽  
Vol 308 (6) ◽  
pp. 332-332
Author(s):  
U. Bleyer
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We consider a family of $$ \mathcal{N} $$ N = 2 superconformal field theories in four dimensions, defined as ℤq orbifolds of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $$ \mathcal{N} $$ N = 1 superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of N , exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $$ \mathcal{N} $$ N = 4 only at high orders in perturbation theory.


1944 ◽  
Vol 30 (10) ◽  
pp. 324-334 ◽  
Author(s):  
G. D. Birkhoff
Keyword(s):  

2018 ◽  
Vol 191 ◽  
pp. 08004
Author(s):  
A.D. Dolgov ◽  
S.I. Godunov ◽  
A.S. Rudenko

We study the evolution of thick domain walls in the expanding universe. We have found that the domain wall evolution crucially depends on the time-dependent parameter C(t) = 1/(H(t)δ0)2, where H(t) is the Hubble parameter and δ0 is the width of the wall in flat space-time. For C(t) > 2 the physical width of the wall, a(t)δ(t), tends with time to constant value δ0, which is microscopically small. Otherwise, when C(t) ≤ 2, the wall steadily expands and can grow up to a cosmologically large size.


1999 ◽  
Vol 14 (18) ◽  
pp. 2905-2920 ◽  
Author(s):  
REMO GARATTINI

A one-loop correction of the quasilocal energy in the Schwarzschild background, with flat space as a reference metric, is performed by means of a variational procedure in the Hamiltonian framework. We examine the graviton sector in momentum space, in the lowest possible state. An application to the black hole pair creation via the Casimir energy is presented. Implications on the foamlike scenario are discussed.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 66 ◽  
Author(s):  
Jean-Pierre Gazeau

An explanation of the origin of dark matter is suggested in this work. The argument is based on symmetry considerations about the concept of mass. In Wigner’s view, the rest mass and the spin of a free elementary particle in flat space-time are the two invariants that characterize the associated unitary irreducible representation of the Poincaré group. The Poincaré group has two and only two deformations with maximal symmetry. They describe respectively the de Sitter (dS) and anti-de Sitter (AdS) kinematic symmetries. Analogously to their shared flat space-time limit, two invariants, spin and energy scale for de Sitter and rest energy for anti-de Sitter, characterize the unitary irreducible representation associated with dS and AdS elementary systems, respectively. While the dS energy scale is a simple deformation of the Poincaré rest energy and so has a purely mass nature, AdS rest energy is the sum of a purely mass component and a kind of zero-point energy derived from the curvature. An analysis based on recent estimates on the chemical freeze-out temperature marking in Early Universe the phase transition quark–gluon plasma epoch to the hadron epoch supports the guess that dark matter energy might originate from an effective AdS curvature energy.


Sign in / Sign up

Export Citation Format

Share Document