Finite-element solution of thermoelastic problems for laminated composite structures

1987 ◽  
Vol 22 (4) ◽  
pp. 498-503
Author(s):  
V. G. Piskunov ◽  
V. S. Sipetov ◽  
V. S. Karpilovskii
2015 ◽  
Vol 30 (9) ◽  
pp. 1175-1199
Author(s):  
Srinivasa Venkateshappa Chikkol ◽  
Prema Kumar Puttiah Wooday ◽  
Suresh Jayadevappa Yelaburgi

Experimental studies were made on isotropic cylindrical skew panels made of Aluminum 7075-T6 and laminated composite cylindrical skew panels under uniaxial compression. The experimental values of the critical buckling load ( Pcr) were determined using five different methods. The values of Pcr were also determined using MSC/Nastran and CQUAD8 finite element. The experimental values of the Pcr obtained by different methods were compared with the finite element solution. The effects of the skew angle and aspect ratio on the critical buckling load of isotropic cylindrical skew panels made of Aluminum 7075-T6 were studied. The effects of the skew angle, aspect ratio, and the laminate stacking sequence on the critical buckling load of laminated composite cylindrical skew panels were also studied. It is found that the method IV (based on a plot of applied load ( P) vs. average axial strain) yields the highest value for Pcr and method III (based on a plot of P vs. square of out-of-plane-deflection) the lowest value for Pcr. The experimental values given by method IV are seen to be closest to the finite element solution, the discrepancy being in the range of 5–23% for laminated composite cylindrical skew panels. For isotropic panels, it is found that the value Pcr initially increases with an increase in the skew angle and later decreases as the skew angle increases beyond 15°. For laminated composite panels, the Pcr value decreases as the aspect ratio increases for all laminate stacking sequences.


Sign in / Sign up

Export Citation Format

Share Document