Fibre-matrix interface and natural fibre composites

1991 ◽  
Vol 10 (10) ◽  
pp. 578-580 ◽  
Author(s):  
J. R. M. d'Almeida
2014 ◽  
Vol 554 ◽  
pp. 116-122 ◽  
Author(s):  
Seyed Meysam Khoshnava ◽  
Raheleh Rostami ◽  
Mohammad Ismail ◽  
Alireza Valipour

Although Natural Fibres have various potential and advantages such as lower in weight, embodied energy and toxicity but their drawbacks are provided relentless competition between natural and synthetics fibres. Intrinsically, Natural Fibres are hydrophilic that is leaded to poor resistance to moisture and incompatible to hydrophobic polymer matrix. This incompatibility of natural fibres results in poor fibre/matrix interface which in turn leads to reduce mechanical properties of the composites. This study try to litreature some methods of chemical treatment or surface modification of Natural Fibres for improving this drawback of natural fibres. The objective of this research is fungi treatment as Green Surface Treatment that is indicate to environmental friendlier process. The use of fungi can provide low cost, highly efficient and environmentally friendly alternatives to natural fibre surface treatment.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5532-5545
Author(s):  
Alan Dickson ◽  
Armin Thumm ◽  
Karl Murton ◽  
David Sandquist

Medium density fibreboard (MDF) fibres produced by a mechanical pulping process have shown potential for reinforcement in natural fibre composites (NFCs). In this work, the effect of process options, available in a pilot-scale fibre processing facility, on NFC properties were investigated. These were: a) refining energy; b) pre-treatment by sulphonation (i.e. chemi-thermo-mechanical pulping (CTMP)) and c) whether the extractives stream (i.e. the plug screw pressate) was discarded or included with the fibre. There were improvements in composite performance with refining energy, although these were not strong or consistent across composite properties. The CTMP fibres gave a substantial improvement over conventional MDF fibres in flexural, tensile, and impact properties, which may be due to improved fibre-matrix interfacial properties because of better mechanical interlocking and the removal of extractives.


2002 ◽  
Vol 10 (6) ◽  
pp. 407-426 ◽  
Author(s):  
Min Zhi Rong ◽  
Ming Qiu Zhang ◽  
Yuan Liu ◽  
Zhi Wei Zhang ◽  
Gui Cheng Yang ◽  
...  

The authors discuss the water absorption behaviour of sisal and its epoxy based composites and the mechanical properties of composites that have been aged in water. In addition, a series of fibre pretreatment techniques, including mercerization, acetylation, cyanoethylation, coupling agent treatment and thermal treatment, which are believed to be able to improve the water resistance of sisal and its composites, have been evaluated. It was found that the water absorption behaviour of sisal composites is controlled mainly by the fibre and the fibre/matrix interfacial characteristics. As a result, appropriate fibre modification to retard water diffusion and enhance interfacial adhesion is necessary if the natural fibre composites are to be used in practical applications.


Sign in / Sign up

Export Citation Format

Share Document