An evaluation of the agronomic potential of partially acidulated rock phosphates in calcareous soil

1994 ◽  
Vol 38 (3) ◽  
pp. 205-212 ◽  
Author(s):  
L. M. Xiong ◽  
R. K. Lu ◽  
B. Truong
Author(s):  
P.W. Shannon

Increasing material, processing, and distribution costs have raised superphosphate prices to a point where many farms cannot support the costs of meeting maintenance phosphate requires men& Alternatives to superphosphate, particularly those that have lower processing costs and contain more P, may offer a solution to the problem provided they are agronomically as effective. Phosphate rock may indeed be such an alternative. Preliminary results from a series of five trials in Northland show that on soils of moderate P fertility, with low phosphate retention (PR) and high pH (5.9.6.0), initial pasture growth responses to rock phosphates are smaller than those from single or triple superphosphate. On one soil of higher PR and lower pH, the differences in yield between the rock-phosphates and the super. phosphates were smaller. Of the rock phosphates tested, Sechura and North Carolina (unground and ungranulated) tended to be more effective than ground and granulated Chatham Rise phosphorite. The effect on production of applying fertilisers once every three years, as opposed to annual applications is being investigated using triple superphosphate and Sechura phosphate rock. After two years, production levels appear largely unaffected by differences in application frequency. A comparison of locally-produced superphosphate with a reference standard showed that both performed similarly, indicating that the local product was of satisfactory quality.


Human zinc (Zn) deficiency is a worldwide problem, especially in developing countries due to the prevalence of cereals in the diet. Among different alleviation strategies, genetic Zn biofortification is considered a sustainable approach. However, it may depend on Zn availability from soils. We grew Zincol-16 (genetically-Zn-biofortified wheat) and Faisalabad-08 (widely grown standard wheat) in pots with (8 mg kg−1) or without Zn application. The cultivars were grown in a low-Zn calcareous soil. The grain yield of both cultivars was significantly (P≤0.05) increased with that without Zn application. As compared to Faisalabad-08, Zincol-16 had 23 and 41% more grain Zn concentration respectively at control and applied rate of Zn. Faisalabad-08 accumulated about 18% more grain Zn concentration with Zn than Zincol-16 without Zn application. A near target level of grain Zn concentration (36 mg kg−1) was achieved in Zincol-16 only with Zn fertilisation. Over all, the findings clearly signify the importance of agronomic Zn biofortification of genetically Zn-biofortified wheat grown on a low-Zn calcareous soil.


Agrotek ◽  
2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Antonius Suparno ◽  
Dwiana Wasgito Purnomo ◽  
Karyoto Sardi Amat

The research was conducted at Soroan, Ayamaru District, South Sorong, Papua. �The objective of the study was to observe the diversity of Arbuscular Mycorrhiza Fungi (AMF) that symbiosis with cultivated plants at the Ayamaru rock phosphates deposit. Based on the observation, there were four AMF associated with nine cultivated plants at the Ayamaru rock phosphates deposit, namely genus Glomus, Acaulospora, Sclerocystis and Gigaspora. Genus Glomus had the greatest diversity (13 types) followed by Acaulospora which comprised of seven types.� On the other hand, the diversity of genus Sclerocystis and Gigaspora only consisted of two types and one type, respectively.


2012 ◽  
Vol 20 (3) ◽  
pp. 303-309
Author(s):  
Ya-Juan LI ◽  
Cui-Hong YANG ◽  
Bo CHEN ◽  
Hui-Zhen QIU

2013 ◽  
Vol 19 (5) ◽  
pp. 873-877
Author(s):  
Zhiwei QIAO ◽  
Jianping HONG ◽  
Yinghe XIE ◽  
Linxuan LI ◽  
Zhenxing REN
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document