Effect of a magnetic field on the elastic modulus and internal friction of alloy oKh27YU5A

1981 ◽  
Vol 13 (11) ◽  
pp. 1393-1396
Author(s):  
T. G. Kovaleva ◽  
A. D. Shevchuk ◽  
P. I. Tereshchenko
2012 ◽  
Vol 184 ◽  
pp. 449-454
Author(s):  
O.A. Lambri ◽  
D. Gargicevich ◽  
F. Tarditti ◽  
F.G. Bonifacich ◽  
Werner Riehemann ◽  
...  

The behavior of internal friction Q-1 and dynamic shear modulus has been studied in polypropylene charged with either different volume fraction or size of magnetite (Fe3O4) particles, as a function of the applied magnetic field at 318 K. An increase of the alternating (AC) magnetic field oscillating with 50 Hz, leads to an increase of the internal friction. In addition, during the subsequently decreasing alternating magnetic field, the internal friction decreases, but a hysteretic behavior appeared. In fact, the internal friction of the decreasing part of magnetic field amplitude is found to be smaller than during the previously increasing amplitude part of the treatment with the alternating magnetic field. Subsequent magnetic treatment cycles, lead to successively decreasing internal friction. In contrast, during the increase of a direct (DC) magnetic field, the internal friction decreases and the elastic modulus increases. The behavior of the internal friction and the elastic modulus during the application of an oscillating magnetic field (AC) is discussed on the basis of the development of both, a new zone with different rheological characteristics than the matrix but of the same material (self-inclusion), and/or a deteriorated or damaged zone (chain’s cuts) of the polymer matrix in the neighborhood of the magnetite inclusion. These effects are promoted by the movement or small relative rotation of the magnetite particles related to the surrounding matrix controlled by the oscillating field. The behavior of the internal friction and elastic modulus during the application of a direct (DC) magnetic field is discussed on the basis of the increase of the internal stresses into the polymer matrix due to the promotion of the magnetomechanical stresses.


1976 ◽  
Vol 33 (1) ◽  
pp. 338-344 ◽  
Author(s):  
J. M. Pelletier ◽  
R. Borrelly ◽  
P. F. Gobin

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1890
Author(s):  
Anton I. Tagiltsev ◽  
Elena Y. Panchenko ◽  
Ekaterina E. Timofeeva ◽  
Yuriy I. Chumlyakov ◽  
Ekaterina S. Marchenko ◽  
...  

This study investigated the effect of stress-induced martensite aging under tensile and compressive stresses on the functional and viscoelastic properties in Ni50.3Ti32.2Hf17.5 polycrystals containing dispersed H-phase particles up to 70 nm in size obtained by preliminary austenite aging at 873 K for 3 h. It was found that stress-induced martensite aging at 428 K for 12 h results in the appearance of a two-way shape memory effect of −0.5% in compression and +1.8% in tension. Moreover, a significant change in viscoelastic properties can be observed: an increase in internal friction (by 25%) and a change in elastic modulus in tensile samples. The increase in internal friction during martensitic transformation after stress-induced martensite aging is associated with the oriented growth of thermal-induced martensite. After stress-induced martensite aging, the elastic modulus of martensite (EM) increased by 8 GPa, and the elastic modulus of austenite (EA) decreased by 8 GPa. It was shown that stress-induced martensite aging strongly affects the functional and viscoelastic properties of material and can be used to control them.


Author(s):  
Md Najib Alam ◽  
Vineet Kumar ◽  
Sang-Ryeoul Ryu ◽  
Tae Jo Koa ◽  
Dong-Joo Lee ◽  
...  

ABSTRACT This article presents the development of a new kind of magnetorheological elastomer blend made with natural rubber, acrylonitrile–butadiene rubber (NR-NBR), and electrolytic iron particles through solution mixing. The compressive stress and elastic modulus of the composites in the isotropic and anisotropic states of the filler were studied. A unique study of the filler distribution and filler orientation mechanism was proposed from the compressive properties and scanning electron microscopy. A strong improvement in the elastic modulus of the NR–NBR blend from isotropic to anisotropic change was achieved as compared with NR and NBR in single-rubber composites. The filler content in the anisotropic magnetorheological elastomers was optimized by measuring the field-dependent elastic modulus in the presence of an externally applied magnetic field. The blend rubber composites showed better sensitivity in the presence of a magnetic field than the NR and NBR composites did. The improvement might be due to the better filler orientation and strong adhesion of filler particles by the NR phase in the blend matrix. The new elastomer blends may have applications in active dampers, vibrational absorption, and automotive bushings.


Sign in / Sign up

Export Citation Format

Share Document