dynamic elastic modulus
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 46)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Qi Li ◽  
Fei Xu ◽  
Hemin Zheng ◽  
Junhao Shi ◽  
Jianyu Zhang

Crumb Rubber Concrete (CRC) can exhibit high freeze-thaw resistance, but its long-term creep behavior under various freeze-thaw conditions remains unclear, which is essential for the safety of pavement engineering in the severe cold zone. In this study, the freeze-thaw effects on the creep behavior of CRC under different stress levels were systematically analyzed by testing the compressive strength, the uniaxial creep under different stress levels, and the dynamic elastic modulus. To simulate real conditions of the road environment in the cold area, the lowest temperature of −20°C, six freeze-thaw cycles of 0, 30, 60, 90, 120, and 150, and seven different stress levels of 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 of the compressive strength were employed in this study. The test results showed that the mass loss rate was 6%–11.2% and the compressive strength decreased by 6.51%–47% after 30–150 freeze-thaw cycles. When the stress level reached its critical value, the relative dynamic elastic modulus decreased with the number of freeze-thaw cycles. After 150 freeze-thaw cycles, failure did not appear when the stress level was lower than 50%, above which the creep failure was determined by the stress level and the number of the freeze-thaw cycles. Meanwhile, it was found that the cracking and interfacial debonding between the matrix and the crumb rubber particle were the main reasons for the degradation of CRC creep performance. Finally, a Weibull distribution-based empirical creep damage model was established to predict the failure of CRC, which can enhance its application to related engineering.


2021 ◽  
pp. 004051752110592
Author(s):  
Xunxun Ma ◽  
Yongxing Wang ◽  
Shujia Li ◽  
Shengze Wang ◽  
He Ye

A filament bundle is a type of yarn, which is composed of nearly parallel and highly oriented polymer monofilaments. Due to its nonlinearity both in material constitutive properties and structure, the filament bundle possesses nonlinear viscoelastic properties. It is important to study the dynamic behavior of the filament bundle accurately during its high-speed movement. Therefore, an accurate expression of the constitutive relation of the filament bundle is an essential prerequisite for its dynamic simulation and analysis. Continued the previous study in Part I: modeling filament bundle method, in this paper, an approach was proposed to identify the equivalent dynamic constitutive parameters of the filament bundle considering frequency-dependent characteristics. Firstly, the identification formulas of the dynamic elastic modulus and viscoelastic coefficients were derived based on the Kelvin model. Then, a testing method of the cross-sectional parameters of the filament bundle under a certain tension was proposed, and the testing device was developed to obtain the area of the filament bundle; The dynamic loading test of the bundle filament was conducted in a DMA Q800 dynamic mechanical tester. Thirdly, the equivalent dynamic elastic modulus and viscoelastic coefficients were obtained through the experimental test. Finally, an analytical method was proposed to verify the correctness of experimental results through simulation. The results show that the excitation frequency has a significant influence on the dynamic elastic modulus and viscoelastic coefficient, and the curves of the equivalent dynamic elastic modulus and viscoelastic coefficient present nonlinear variation characteristics.


2021 ◽  
Author(s):  
Qi Sun ◽  
Botao Li ◽  
Yiting Wang ◽  
Hui Wang

Abstract The use of tailings, waste rock, fly ash and slag to prepare geopolymer concrete can effectively solve the problems of land resources occupied by tailings and waste rock, low utilization rate and environmental pollution. Using a dry-wet circulation method, fly ash for a different corrosion solution to geopolymer concrete (referred to as TWGPC) was analysed. Through an appearance change, the corrosion resistance coefficient of the compressive strength, relative dynamic elastic modulus, tensile splitting strength, relative mass and durability were investigated, using scanning electron microscopy (SEM) analysis of the microstructure, The life of TWGPC was predicted based on the GM(1,1) prediction model of grey system theory. The test results show that with an increase in the number of dry-wet cycles, the surface of the specimen crystallizes, cracks, spalls and exhibits other phenomena. The compressive strength corrosion coefficient, relative dynamic elastic modulus, crack tensile strength and relative mass show a trend of increasing first and then decreasing, finally reaching the peak value after 40 cycles. The erosion products generated by the early reaction fill the slurry aggregate pores and improve the strength of TWGPC. In a later stage, a large number of erosion products absorb water and expand, the internal pores of TWGPC are connected, leading to a decrease in strength. Cl- inhibits the corrosion of SO42- in concrete and improves the durability of concrete.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingjing Zhou ◽  
Fasuo Zhao ◽  
Yanbo Zhu ◽  
Wenqi Dong ◽  
Ziguang He

Sliding zone dynamics in the Qinling-Daba mountain area under different dynamic parameters have not been studied extensively. In this study, we investigated the dynamic behavior of the sliding zones of a high-steep rock landslide in the Qinling-Daba mountain area under the influence of dynamic stress amplitude and frequency and proposed an empirical model of the dynamic constitutive relationship. The dynamic behavior was studied based on a cyclic triaxial test system. The results indicated that an increase in the dynamic stress amplitude decreased the dynamic elastic modulus linearly, increased the damping ratio, and increased the axial strain exponentially. Among these properties, the elastic strain was found to be more sensitive to the increase in the dynamic stress amplitude than the plastic strain. As the loading frequency increased, the dynamic elastic modulus increased, whereas the damping ratio decreased. Furthermore, the proposed empirical model of the dynamic constitutive relationship between the vibration number and loading frequency based on the dynamic elastic modulus could satisfactorily describe the dynamic stress-strain relationships of the samples from test stability and failure zones. These findings are expected to make a significant contribution toward further revealing the sliding mechanism of such landslides.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Bin Chen ◽  
Jun Wang

A freeze-thaw resistance is an important indicator of the durability of alkali-activated slag concrete, which causes structural failure when the performance is low, especially in severely cold areas. In this study, solid sodium aluminate and sodium silicate were used as composite alkaline activators, while slag was used as the raw material to prepare alkali-activated slag concrete, whose freeze-thaw resistance, as well as that of ordinary cement concrete, was experimentally studied by varying the freeze-thaw cycles. The effects of the mass, compressive strength, and dynamic elastic modulus of the sample were investigated by considering the influence of different water-to-slag ratios and slag contents, while the damage variables and model were also analyzed. The results showed that alkali-activated slag concrete had an excellent freeze-thaw resistance, which was significantly affected by the water-to-slag ratio and compressive strength; specifically, the higher the water-to-slag ratio, the lower the freeze-thaw resistance, and the higher the compressive strength, the better the freeze-thaw resistance. The freeze-thaw durability, microstructure, and damage mechanism were studied via microscopic analysis. When analyzed via the microstructure test, crack pores and microcracks with narrow spaces and large surface areas were generated under freeze-thaw damage conditions, but the dense hydration structure and high-bonding-strength hydration products led to a better freeze-thaw resistance. The damage model was established using compressive strength and relative dynamic elastic modulus as damage variables, and the attenuation exponential and accumulative damage power function model had a high accuracy, which could better reflect the freeze-thaw damage law and damage degree and predict the lifetime of alkali-activated slag concrete.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guangyan Liu ◽  
Song Mu ◽  
Jingshun Cai ◽  
Deqing Xie ◽  
Ying Zhou ◽  
...  

The damage development trend of concrete with cracks in salt-freezing environment is systematically studied. The cracks are also tested in intact concrete for comparison, and crack characterization is introduced. The mass loss, the relative dynamic elastic modulus, and the change of crack width are analyzed. Results show that the crack width increases as the salt-freezing cycle progresses. Following the development trend of the cracks, concrete cracks can be divided into three categories: 0–40, 40–100, and 100–150 μm. The mass loss increases significantly, and the change of relative dynamic elastic modulus decreases in concrete with an initial crack compared with the intact concrete. When the crack width is 80 μm, a maximum mass loss rate of 0.19% and a minimum relative dynamic elastic modulus of 75.81% can be obtained. These test results prove that crack and freeze-thaw coupling can influence each other and accelerate the failure of concrete. Overall, this study can serve as a basis for the durability design and life improvement of concrete structures.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jinbao Tang ◽  
Sheng Li ◽  
Guangsheng Qin ◽  
Wanjie Lu ◽  
Zhijie Zhu ◽  
...  

To reveal the dynamic mechanical response and energy dissipation behavior of rockburst-prone coal samples under impact loading, the compressive experiments on Xinzhouyao coals (prone) and Machang coals (nonprone) under different impact loadings were carried out using the Split Hopkinson Pressure Bar (SHPB). The dynamic mechanical properties were studied, including dynamic elastic modulus, strain rate, peak stress, peak strain, dynamic increment factor, and energy dissipation. The results show that the dynamic elastic modulus, peak stress, and peak strain of both prone and nonprone coals perform an obvious correlation with the increase of strain rate. The strain rate strengthening effect on the dynamic elastic modulus and compressive strength of rockburst-prone coal samples are more significant, reflected by the greater increment with the increase of strain rate, while the dynamic increment factors of both prone and nonprone coals show apparent strain rate strengthening. The incident, reflected, and transmitted energy of both two coals linearly increases with the impact velocity, although the increased rate may be different. The dissipated energy of rockburst-prone coal samples increases faster, while the rate of the increase of the dissipated energy is more stable with strain rate. The results may provide an important reference for revealing the failure law of engineering-scaled coal mass suffered by rockburst.


2021 ◽  
Vol 14 (10) ◽  
Author(s):  
De-Gou Cai ◽  
Shao-Wei Wei ◽  
Yang-Sheng Ye ◽  
Qian-Li Zhang ◽  
Zhong-Guo Li ◽  
...  

AbstractA high-speed railway has high requirements for line smoothness, and uneven settlement control is the primary factor considered in the design and operation of the subgrade. The emergence of lightweight subgrade structures meets the needs of the development of the high-speed railway. As a kind of filling material with good performance, lightweight foam concrete can effectively reduce the load and excessive settlement of subgrade and effectively reduce the cost of foundation treatment. This paper studied the dynamic characteristics of lightweight foam concrete with different wet densities and water-bearing states under train loading. The effects of wet density and fly ash content on the compressibility, impermeability, and frost resistance of lightweight foam concrete were analyzed in detail. The results show that the lightweight foam concrete still has high residual strength after compression, which is about 60% of its peak strength. Under different mix ratios, the critical dynamic stress of the lightweight foam concrete is generally 0.2–0.3 times the unconfined compressive strength, and the dynamic elastic modulus increases with the increase of wet density and cyclic stress amplitude. With the fly ash content increasing, the volume water absorption of lightweight foam concrete decreases first and then increases, and the critical value of fly ash content is 40%. The frost resistance of lightweight foam concrete gradually increases with the increase of wet density, and the dynamic elastic modulus of the sample with 279 kg·m−3 density lost 41.1% after 20 freeze–thaw cycles. When the content of fly ash is 20%, the frost resistance of lightweight foam concrete is equivalent to that of pure cement.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Anhua Xu ◽  
Pengcheng Wang ◽  
Jianhong Fang

The distribution of chlorine saline soils is extensive in Haixi region of Qinghai Province in Northwest China. Its natural and geographical conditions are unique, and the external environment varies greatly. To study the effects of variable external environment on the mechanical characteristics of chlorine saline soils, a number of unconsolidated undrained (UU) dynamic triaxial tests under different confining pressure, moisture content, and loading frequency were carried out. The dynamic stress–dynamic strain, failure strength, dynamic elastic modulus, and parameter of shear strength were analyzed. The triaxial test results demonstrated that the stress–strain curves of the soil were strain-hardening. The failure strength and dynamic elastic modulus increased with the increasing of confining pressure; the law with moisture content and loading frequency were inconsistent. The dynamic cohesion and dynamic friction angle increased with the increasing of loading frequency, but decreased with the increasing of moisture content. Besides, the significance analysis theory was used to analyze the effect degree of different factors. It found that the effects of confining pressure, loading frequency, and the interaction between confining pressure and frequency on mechanical characteristics were significant, but the moisture content had less effect.


2021 ◽  
Author(s):  
Chunyang Zhang ◽  
Bo Ke ◽  
Chuanju Liu ◽  
Linmin Ding ◽  
Yixian Wang ◽  
...  

Abstract The mechanics of rock masses in cold regions have attracted the attention of researchers from all over the world, and the concern here is that the mechanical properties of rock masses are inevitably weakened under freeze-thaw cycles. In this paper, firstly, granite samples were subjected to different freeze-thaw cycles, after that, we dealt with the freeze-thawed samples considering four different states, such as saturated and frozen states, saturated and normal temperature states, dry and frozen states as well as dry and normal temperature states. The impact compression test was carried out by using the Split Hopkinson Pressure Bar (SHPB) device. Results show that the impact strength of granite samples deteriorates with the increase of freeze-thaw cycles in the same state, for samples in different states, although the number of freeze-thaw cycles is equal, the degree of deterioration of the impact strength is different. For freeze-thawed granite samples in the same state, the dynamic elastic modulus decreases with the increase of freeze-thaw cycles, and its degree of decrease is different for different states. Under the same freeze-thaw cycles, the deterioration of mechanical properties of granite samples is different in four different weather states, for example, the dynamic elastic modulus from large to small is generally as follows: saturated and frozen states, saturated and normal temperature states, dry and frozen states as well as dry and normal temperature states. Finally, the freeze-thaw influence factor is proposed to describe the damage of granite samples. All in all, it can be concluded that water and low temperature strengthen the influence of freeze-thaw cycles on the dynamic mechanical properties of granite samples.


Sign in / Sign up

Export Citation Format

Share Document