Wear-resistant multicomponent carbide coatings based on hard alloys

1987 ◽  
Vol 29 (3) ◽  
pp. 217-221
Author(s):  
L. G. Voroshnin ◽  
G. V. Borisenok ◽  
S. V. Poberezhnyi ◽  
N. A. Vityaz
Author(s):  
Andrej K. Kuleshov ◽  
Vladimir V. Uglov ◽  
V. M. Anishchik ◽  
V. A. Firago ◽  
D. P. Rusalski ◽  
...  

Author(s):  
A. V. Krokhalev ◽  
V. O. Kharlamov ◽  
S. V. Kuzmin ◽  
V. I. Lysak

The article presents experimental data on explosive compaction of chromium carbide (Cr3C2) powder mixtures with metals (Ti, Ni, Cu) provided with theoretical explanations. These data were used as a basis for stating science-based principles of composition selection and technology development to produce antifriction wear-resistant chromium carbide hard alloys and coatings by explosion. Explosive compaction of powder mixtures was carried out according to a scheme using a normally incident plane detonation wave in a wide range of loading parameters (powder heating temperature in shock waves varied from 200 to1000 °Cand maximum shock compression pressure varied from 4 to 16 GPa during experiments). Phase transformation analysis was carried out by the numerical thermodynamic modeling of phase equilibrium using the Thermo-Calc software. Microstructure, chemical and phase compositions were studied using optical («Axiovert 40МАТ» by CarlZeiss,Germany), scanning («Versa 3D» and «Quanta 3D FEG» byFEI,USA), transmission («BS 540» byTesla,Czech Republic, «Titan 80-300» and «Tecnai G2 20F» byFEI,USA) electron microscopes and «Solver Pro» atomic force microscope (LLC «NT-MDT», Zelenograd). Temperature stability and oxidation resistance at elevated temperatures of the materials obtained by explosion was studied using thermogravimetric analysis (TGA) using the «STA 449 F3 Jupiter» instrument (NETZSCH, Germany) in the synthetic air environment when heated to1500 °C. Tribological tests were carried out on the MI-1M friction machine (MEZIMiV,Moscow) according to the pin-on-ring scheme with plunging in distilled water environment. The mechanisms of consolidation and formation of strong boundaries between powder material particles during explosive compaction are described. It is shown that hard alloys of chromium carbide with titanium bond obtained by explosion retain their phase compositions without any changes and resist to oxidation up to600 °C, and also have significantly better anti-friction properties and wear resistance than the SGP-0,5 and KHN-20 materials used in water-lubricated friction couples until the present time.


2015 ◽  
Vol 51 (1) ◽  
pp. 37-43
Author(s):  
H. А. Bahlyuk ◽  
L. M. Apinins’ka ◽  
N. M. Verheles ◽  
N. O. Us’kova ◽  
O. V. Bezdorozhev

2017 ◽  
Vol 21 (1) ◽  
pp. 16-23
Author(s):  
V. V. Malihin ◽  
N. M. Gaidah ◽  
Yu. A. Artemenco ◽  
S. G. Novikov ◽  
F. V. Novikov

High accuracy and efficiency indices of machining of worn-out after continuous service parts, reconditioned using materials with high physical and mechanical properties have been studied; a reconditioning technique for worn-out surfaces of parts have been presented; to restore the dimensions of some parts, thermal spraying technique without inadmissible excessive heating of the parts has been chosen, and for another group of parts the process of manual argon-arc surfacing has been chosen; some specifications of the parts of the tram, trackless trolley bus, "KAMAZ", DT-75 tractor reconditioned by means of surfacing, coating and machining are given. Theoretical analysis of the conditions of the reduction of the elastic displacement value, appearing in a technological system during mechanical processing and determining the parameters of machining precision has been performed. Machining accuracy and efficiency improving features for grinding and cutting with cutting tools of parts with hardened (wear-resistant hardfacing materials with hardness up to HRC 63) function surfaces have been theoretically substantiated; some regularities of stock removal while grinding parts reconditioned using wear-resistant hardfacing materials have been analytically described, ways to improve the efficiency of their machining involving application of the method of deep grinding with the wheel periphery with rather low parts speed have been defined. Some ways to increase machining efficiency, to reduce energy consumption of machining and thickness of the cutting by grains of the wheel, and thus the wheel wear rate are presented. By means of calculations it was found out that realizing deep grinding of facing material, machining efficiency can increase by up to 8 times (with the same cutting thickness by a wheel grain) compared with the deep grinding of a solid (homogenous) material. Significant potential for grinding parts restored using wear-resistant surfacing materials, which opens new prospects for machining of resurfaced and face-hardened parts for freight and passenger vehicles, is shown. Potential for machining efficiency enhancement of the mentioned parts with cutting tools made of superhard synthetic materials, hard alloys with wear-resistant coatings, the use of damping cutters, and diamond-abrasive grinding is specified.


2021 ◽  
Vol 23 (4) ◽  
pp. 155-166
Author(s):  
Yuri Krutskii ◽  
◽  
Evgeny Maksimovskii ◽  
Roman Petrov ◽  
Olga Netskina ◽  
...  

Introduction. Titanium carbide and diboride are characterized by high values of hardness, chemical inertness and for this reason are widely used in modern technology. This paper provides information on the synthesis of titanium carbide and diboride by carbothermal and carbide-boron methods, respectively, on the use of titanium carbide as an abrasive and in the manufacture of tungsten-free hard alloys, carbide steels, wear-resistant coatings, as well as titanium diboride in the production of cutting tools and ceramics based on boron carbide The aim of this work is to study the processes of synthesis of highly dispersed powders of titanium carbide and diboride, which are promising for the manufacture of cutting tools, wear-resistant coatings, abrasives and ceramics. Research methods. Titanium oxide TiO2, nanofibrous carbon (NFC), and highly dispersed boron carbide were used as reagents for the synthesis of titanium carbide and diboride. Experiments to obtain titanium carbide were carried out in a resistance furnace, and titanium diboride in an induction furnace. X-ray studies of the phase composition of titanium carbide and diboride samples were carried out on an ARL X-TRA diffractometer (Thermo Electron SA). The determination of the content of titanium and impurities in the samples of titanium carbide and diboride was carried out by the X-ray spectral fluorescence method on an ARL-Advant'x analyzer. The total carbon content in the titanium carbide samples was determined on an S-144 device from LECO. The content of boron and other elements for titanium diboride samples was determined by inductively coupled plasma atomic emission spectrometry (ICP AES) on an IRIS Advantage spectrometer (Thermo Jarrell Ash Corporation). The surface morphology and particle sizes of the samples were studied using a Carl Zeiss Sigma scanning electron microscope (Carl Zeiss). The determination of the particle/aggregate size distribution was performed on a MicroSizer 201 laser analyzer (BA Instruments). Results. The paper proposes technological processes for obtaining highly dispersed powders of titanium carbide and diboride. The optimum synthesis temperature for titanium carbide is 2,000…2,100 oC, and for titanium diboride 1,600…1,700 oC. The content of the basic substance is at the level of 97.5…98.0 wt. %. Discussion. A possible mechanism for the formation of titanium carbide and diboride is proposed, which consists in the transfer of vapors of titanium oxides to the surface of solid carbon (synthesis of titanium carbide) and vapors of boron and titanium oxides to the surface of solid carbon (synthesis of titanium diboride). Due to the high purity and dispersion values, the resulting titanium carbide powder can be used as an abrasive material and for the manufacture of tungsten-free hard alloys, carbide steels, wear-resistant coatings, and titanium diboride powder can be used for the preparation of cutting tools and ceramics based on boron carbide.


1977 ◽  
Vol 16 (5) ◽  
pp. 394-397
Author(s):  
N. N. Sereda ◽  
M. S. Koval'chenko ◽  
I. T. Belik ◽  
V. G. Solomenko ◽  
V. V. Uvarov ◽  
...  

1988 ◽  
Vol 27 (11) ◽  
pp. 876-878
Author(s):  
G. L. Platonov ◽  
S. A. Kiryukhin ◽  
A. I. Anikeev ◽  
V. N. Anikin

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2344 ◽  
Author(s):  
Satyapal Mahade ◽  
Karthik Narayan ◽  
Sivakumar Govindarajan ◽  
Stefan Björklund ◽  
Nicholas Curry ◽  
...  

Titanium- and chromium-based carbides are attractive coating materials to impart wear resistance. Suspension plasma spraying (SPS) is a relatively new thermal spray process which has shown a facile ability to use sub-micron and nano-sized feedstock to deposit high-performance coatings. The specific novelty of this work lies in the processing of fine-sized titanium and chromium carbides (TiC and Cr3C2) in the form of aqueous suspensions to fabricate wear-resistant coatings by SPS. The resulting coatings were characterized by surface morphology, microstructure, phase constitution, and micro-hardness. The abrasive, erosive, and sliding wear performance of the SPS-processed TiC and Cr3C2 coatings was also evaluated. The results amply demonstrate that SPS is a promising route to manufacture superior wear-resistant carbide-based coatings with minimal in situ oxidation during their processing.


Sign in / Sign up

Export Citation Format

Share Document