suspension plasma spraying
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 28)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
pp. 241-254
Author(s):  
Erick Meillot ◽  
Benjamin Bernard ◽  
Samuel Lett ◽  
Léo Kovacs ◽  
Robin Rixain ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 879
Author(s):  
Monika Michalak ◽  
Paweł Sokołowski ◽  
Mirosław Szala ◽  
Mariusz Walczak ◽  
Leszek Łatka ◽  
...  

Thermally sprayed ceramic coatings are applied for the protection of surfaces that are exposed mainly to wear, high temperatures, and corrosion. In recent years, great interest has been garnered by spray processes with submicrometric and nanometric feedstock materials, due to the refinement of the structure and improved coating properties. This paper compares the microstructure and tribological properties of alumina coatings sprayed using conventional atmospheric plasma spraying (APS), and various methods that use finely grained suspension feedstocks, namely, suspension plasma spraying (SPS) and suspension high-velocity oxy-fuel spraying (S-HVOF). Furthermore, the suspension plasma-sprayed Al2O3 coatings have been deposited with radial (SPS) and axial (A-SPS) feedstock injection. The results showed that all suspension-based coatings demonstrated much better wear resistance than the powder-sprayed ones. S-HVOF and axial suspension plasma spraying (A-SPS) allowed for the deposition of the most dense and homogeneous coatings. Dense-structured coatings with low porosity (4 vol.%) and good cohesion to the metallic substrate, containing a high content of α–Al2O3 phase (56 vol.%) and a very low wear rate (0.2 ± 0.04 mm3 × 10−6/(N∙m)), were produced with the S-HVOF method. The wear mechanism of ceramic coatings included the adhesive wear mode supported by the fatigue-induced material delamination. Moreover, the presence of wear debris and tribofilm was confirmed. Finally, the coefficient of friction for the coatings was in the range between 0.44 and 0.68, with the highest values being recorded for APS sprayed coatings.


2021 ◽  
Vol 416 ◽  
pp. 127175
Author(s):  
Shiming Xie ◽  
Chen Song ◽  
Shaowu Liu ◽  
Pengjiang He ◽  
Frédéric Lapostolle ◽  
...  

2021 ◽  
Vol 409 ◽  
pp. 126907
Author(s):  
Ashish Ganvir ◽  
Sneha Goel ◽  
Sivakumar Govindarajan ◽  
Adwait Rajeev Jahagirdar ◽  
Stefan Björklund ◽  
...  

Author(s):  
Alice Dolmaire ◽  
Enni Hartikainen ◽  
Simon Goutier ◽  
Emilie Béchade ◽  
Michel Vardelle ◽  
...  

AbstractSuspension plasma spraying (SPS) enables the production of various coating microstructures with unique mechanical and thermal properties. Aeronautical manufacturers have been working for fifty years to improve the thermal barrier coating (TBC) performances in gas turbines. Commercial plasma torches with a segmented anode that are characterized by stable plasma jets should enable a better control of the TBC microstructure. The addition of diatomic gases such as hydrogen in the plasma-forming gas affects the plasma jet formation and causes some instabilities. However, it enhances the thermal conductivity of the gas flow, the plasma mass enthalpy and the heat transfer to particles. This study aims to characterise and describe the coating microstructure changes of yttria-stabilised zirconia when gradually adding hydrogen with argon into the plasma gas mixture. The effect of hydrogen is weighted out due to the gas mass enthalpy, mean velocity at the nozzle exit and “hot zone” length of the plasma jet. The coating microstructures, which depend on these plasma jet parameters, will be mapped from feathery and porous to dense and cracked deposits depending on the spraying conditions.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 224
Author(s):  
Mehdi Jadidi ◽  
Sara Moghtadernejad ◽  
Jack Hanson

Suspension plasma spraying (SPS) is an effective technique to enhance the quality of the thermal barrier, wear-resistant, corrosion-resistant, and superhydrophobic coatings. To create the suspension in the SPS technique, nano and sub-micron solid particles are added to a base liquid (typically water or ethanol). Subsequently, by using either a mechanical injection system with a plain orifice or a twin-fluid atomizer (e.g., air-blast or effervescent), the suspension is injected into the high-velocity high-temperature plasma flow. In the present work, we simulate the interactions between the air-blast suspension spray and the plasma crossflow by using a three-dimensional two-way coupled Eulerian–Lagrangian model. Here, the suspension consists of ethanol (85 wt.%) and nickel (15 wt.%). Furthermore, at the standoff distance of 40 mm, a flat substrate is placed. To model the turbulence and the droplet breakup, Reynolds Stress Model (RSM) and Kelvin-Helmholtz Rayleigh-Taylor breakup model are used, respectively. Tracking of the fine particles is continued after suspension’s fragmentation and evaporation, until their deposition on the substrate. In addition, the effects of several parameters such as suspension mass flow rate, spray angle, and injector location on the in-flight behavior of droplets/particles as well as the particle velocity and temperature upon impact are investigated. It is shown that the injector location and the spray angle have a significant influence on the droplet/particle in-flight behavior. If the injector is far from the plasma or the spray angle is too wide, the particle temperature and velocity upon impact decrease considerably.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1023
Author(s):  
Seungjun Lee ◽  
Jaehoo Lee ◽  
Woongsik Kim ◽  
Nong-Moon Hwang

Dense yttrium oxyfluoride (YOF) coating was successfully deposited by suspension plasma spraying (SPS) with coaxial feeding. After deposition for 6 min at a plasma power of 105 kW, the thickness of the YOF coating was 55 ± 3.2 µm with a porosity of 0.15% ± 0.01% and the coating rate was ~9.2 µm/min. The crystalline structure of trigonal YOF was confirmed by X-ray diffractometry (XRD). The etching behavior of the YOF coating was studied using inductively coupled CHF3/Ar plasma in comparison with those of the Al2O3 bulk and Y2O3 coating. Crater-like erosion sites and cavities were formed on the whole surface of the Al2O3 bulk and Y2O3 coating. In contrast, the surface of the YOF coating showed no noticeable difference before and after exposure to the CHF3/Ar plasma. Such high resistance of the YOF coating to fluorocarbon plasma comes from the strongly fluorinated layer on the surface. The fluorination on the surface of materials was confirmed by X-ray photoelectron spectrum analysis (XPS). Depth profiles of the compositions of Al2O3, Y2O3, and YOF samples by XPS revealed that the fluorination layer of the YOF coating was much thicker than those of Al2O3 and Y2O3. These results indicate that if the inner wall of the semiconductor process chamber is coated by YOF using SPS, the generation of contamination particles would be minimized during the fluorocarbon plasma etching process.


Sign in / Sign up

Export Citation Format

Share Document