Effect of whole-body γ-ray irradiation on tissue protein synthesis

1968 ◽  
Vol 66 (6) ◽  
pp. 1340-1342
Author(s):  
I. I. Ivanov ◽  
V. V. Rudakov
1994 ◽  
Vol 266 (3) ◽  
pp. E298-E307 ◽  
Author(s):  
M. J. Rennie ◽  
K. Smith ◽  
P. W. Watt

This paper reviews the evidence for and against the adoption of methods for the measurement of human tissue protein synthesis based upon the incorporation of stable isotopically labeled amino acids administered either as a continuous infusion or as a flooding dose. The practical advantages of the flooding dose method are the relative ease of application of the tracer and the ability to make a repeat measurement within approximately 2 h. For the method depending upon continuous infusion of labeled amino acid, the advantages include the use of labeled amino acids at true tracer doses (i.e., with no disturbance of metabolism) and the ability to make simultaneous measurements of whole body turnover and limb or organ turnover (given appropriate sampling techniques). The crucial question concerning the accuracy of the two methods (e.g., the 2-fold difference in the rate of skeletal muscle protein synthesis) remains unresolved, but in our opinion more evidence exists in favor of the values obtained from the continuous infusion method. Furthermore, as techniques for measurement of stable isotopically labelled amino acids improve, the length of time necessary for tracer infusion will fall, and the practical advantages of the flooding dose protocol will lessen in comparison.


1991 ◽  
Vol 81 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Yves Cherel ◽  
Didier Attaix ◽  
Danuta Rosolowska-Huszcz ◽  
Rajae Belkhou ◽  
Jean-Patrice Robin ◽  
...  

1. Little information is currently available on protein turnover during chronic protein loss situations. We have thus measured the whole-body and tissue protein fractional synthesis rates (ks), the whole-body fractional protein degradation rate (kd), the capacity for protein synthesis (Cs) and the efficiency of protein synthesis (kRNA) in vivo in fed and fasted (1, 5 and about 9 days) 400 g rats. 2. One day of starvation resulted in a reduced ks and an increased kd in the whole body. ks was selectively depressed in skeletal muscles, mainly owing to a reduced kRNA, and was not modified in heart, liver and skin. The contribution of skin to whole-body protein synthesis increased by 39%. 3. During the phase of protein sparing (5 days of fasting), kd in the whole body decreased below the control fed level. ks in skeletal muscles was sustained because kRNA was restored to 82–98% of the control value. 4. Rats were in a protein-wasting phase after 9 days of starvation. kd in the whole body did not increase and was actually 78% of the value observed in fed animals. By contrast, ks in the whole body and tissues decreased to 14–34% of the control values, owing to reductions in both Cs and kRNA. Whatever the duration of the fast, the contribution of the skin to whole-body protein synthesis largely exceeded that of skeletal muscle. 5. The present findings suggest that the main goal in the treatment of chronic protein loss should be to sustain protein synthesis. Our data also emphasize the importance of skin in whole-body protein synthesis in fasting and possibly in other protein loss situations.


1989 ◽  
Vol 62 (3) ◽  
pp. 657-671 ◽  
Author(s):  
J. H. Eisemann ◽  
A. C. Hammond ◽  
T. S. Rumsey

The effect of injection with bovine somatotropin (bST) on the fractional rate of protein synthesis (FSR) in tissues of beef steers was studied using a continuous infusion of [1-14C]leucine. Minimum and maximum FSR were calculated from free leucine specific radioactivity (SRA) in plasma or tissue homogenate respectively. Tissue nucleic acid concentrations were also quantified. Tissue samples were obtained from several muscles, sections of the small intestine and liver. In response to bST, both minimum and maximum FSR increased in muscle but not liver or intestinal tissues. Absolute synthesis rate increased in several muscles and small intestine tissues. Treatment with bST increased the relative SRA of protein-bound leucine in muscles compared with liver; increased the amount of protein synthesis per unit empty body-weight (EBW) in most muscles; and increased weight of small intestine relative to EBW, suggesting a differential response between liver and the other tissues measured. Compositional changes in response to bST occurred only in muscles. DNA concentration increased while protein:DNA decreased in the gastrocnemius muscle and RNA:DNA increased in the longissimus dorsi. The maximum percentage contribution of tissue protein synthesis to whole-body protein synthesis was 12·6, 25·7 and 20·5, and 13·0, 29·4 and 25·8 for liver, muscle, and small intestine in placebo-treated and bST-injected steers respectively.


2012 ◽  
Vol 58 (4) ◽  
pp. 297-302 ◽  
Author(s):  
Kazuyo TUJIOKA ◽  
Takashi YAMADA ◽  
Mami AOKI ◽  
Koji MORISHITA ◽  
Kazutoshi HAYASE ◽  
...  

2006 ◽  
Vol 165 (3) ◽  
pp. 297-311 ◽  
Author(s):  
S DANICKE ◽  
T GOYARTS ◽  
S DOLL ◽  
N GROVE ◽  
M SPOLDERS ◽  
...  

1990 ◽  
Vol 120 (9) ◽  
pp. 1006-1015 ◽  
Author(s):  
Claude Champredon ◽  
Elisabeth Debras ◽  
Philippe Patureau Mirand ◽  
Maurice Arnal

2002 ◽  
Vol 283 (4) ◽  
pp. E638-E647 ◽  
Author(s):  
Teresa A. Davis ◽  
Marta L. Fiorotto ◽  
Douglas G. Burrin ◽  
Rhonda C. Vann ◽  
Peter J. Reeds ◽  
...  

Studies have shown that protein synthesis in skeletal muscle of neonatal pigs is uniquely sensitive to a physiological rise in both insulin and amino acids. Protein synthesis in cardiac muscle, skin, and spleen is responsive to insulin but not amino acid stimulation, whereas in the liver, protein synthesis responds to amino acids but not insulin. To determine the response of protein synthesis to insulin-like growth factor I (IGF-I) in this model, overnight-fasted 7- and 26-day-old pigs were infused with IGF-I (0, 20, or 50 μg · kg−1 · h−1) to achieve levels within the physiological range, while amino acids and glucose were clamped at fasting levels. Because IGF-I infusion lowers circulating insulin levels, an additional group of high-dose IGF-I-infused pigs was also provided replacement insulin (10 ng · kg−0.66 · min−1). Tissue protein synthesis was measured using a flooding dose ofl-[4-3H]phenylalanine. In 7-day-old pigs, low-dose IGF-I increased protein synthesis by 25–60% in various skeletal muscles as well as in cardiac muscle (+38%), skin (+24%), and spleen (+32%). The higher dose of IGF-I elicited no further increase in protein synthesis above that found with the low IGF-I dose. Insulin replacement did not alter the response of protein synthesis to IGF-I in any tissue. The IGF-I-induced increases in tissue protein synthesis decreased with development. IGF-I infusion, with or without insulin replacement, had no effect on protein synthesis in liver, jejunum, pancreas, or kidney. Thus the magnitude, tissue specificity, and developmental change in the response of protein synthesis to acute physiological increases in plasma IGF-I are similar to those previously observed for insulin. This study provides in vivo data indicating that circulating IGF-I and insulin act on the same signaling components to stimulate protein synthesis and that this response is highly sensitive to stimulation in skeletal muscle of the neonate.


Sign in / Sign up

Export Citation Format

Share Document