fusarium toxin
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xin Liu ◽  
Xin Fang ◽  
Shuang Wang ◽  
Deliang Wu ◽  
Tao Gao ◽  
...  

Abstract Production of the Fusarium toxin deoxynivalenol (DON) is associated with oxidative stress and has been indicated to be part of an adaptive response to oxidative stress in the important wheat fungus Fusarium graminearum. In this study, we found that the antioxidant methyl gallate (MG) displays inhibitory effects against mycelial growth, conidial formation and germination, and DON biosynthesis in F. graminearum in a dose-dependent manner. Treatment with 0.05% (w/v) MG resulted in an abnormal swollen conidial morphology. The expression of the TRI genes involved in DON biosynthesis was significantly reduced, and the induction of Tri1-GFP green fluorescence signals in the spherical and crescent-shaped toxisomes was abolished in the MG-treated mycelium. RNA-Seq analysis of MG-treated F. graminearum showed that 0.5% (w/v) MG inhibited DON production by possibly altering membrane functions and oxidoreductase activities. Coupled with the observations that MG treatment decreases catalase, POD and SOD activity in F. graminearum. The results of this study indicated that MG displays antifungal activity against DON production by modulating its oxidative response. Taken together, the current study revealed the potential of MG in inhibiting mycotoxins in F. graminearum. Graphical abstract


2020 ◽  
Vol 21 (2) ◽  
pp. 271-279
Author(s):  
Z. H. Shar

Zearalenone (ZEA) is the most occurring Fusarium toxin in animal feed causing reproductive disorders and results in severe economical losses. A renewable bio adsorbent sourced from banana peel was tested for in vitro removal of ZEA from liquid mediums at different pH values. Efficacy of banana peel to sequester ZEA was evaluated by varying its pH, adsorbent dosage, equilibration time and quantified by using UHPLC-MS/MS. Adsorption was found to be efficient and completed in fifteen minutes with highest adsorption at alkaline pH (9). The adsorption and desorption studies have demonstrated the adsorption was strong enough to sustain the pH changes (3-9). Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscope (SEM) was used to characterize the surface of bio sorbent to explain the mechanism of adsorption. Langmuir and Freundlich isotherm was found to be best fitted model with maximum monolayer capacity (Q0) 8 ng/mg. The results of this study suggested that dried banana peel may be an effective low cost decontamination method to be incorporated in animal feed.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2157
Author(s):  
Xinglin Liu ◽  
Chang Xu ◽  
Zaibin Yang ◽  
Weiren Yang ◽  
Libo Huang ◽  
...  

Zearalenone (ZEA) is a secondary metabolite with estrogenic effects produced by Fusarium fungi and mainly occurs as a contaminant of grains such as corn and wheat. ZEA, to which weaned gilts are extremely sensitive, is the main Fusarium toxin detected in corn–soybean meal diets. Our aim was to examine the effects of ZEA on the growth performance, intestinal disaccharidase activity, and anti-stress capacity of weaned gilts. Twenty 42-day-old healthy Duroc × Landrace × Large White weaned gilts (12.84 ± 0.26 kg) were randomly divided into control and treatment (diet containing 1.04 mg/kg ZEA) groups. The experiment included a 7-day pre-trial period followed by a 35-day test period, all gilts were euthanized and small intestinal samples were collected and subjected to immunohistochemical and western blot analyses. The results revealed that inclusion of 1.04 mg/kg ZEA in the diet significantly reduced the activities of lactase, sucrase, and maltase in the duodenum, jejunum, and ileum of gilts. Similarly, the activities of superoxide dismutase and glutathione peroxidase in the duodenum, jejunum, and ileum, and activities of catalase in the jejunum and ileum were reduced (p < 0.05). Conversely, the content of malondialdehyde in the duodenum, jejunum, and ileum, and the integrated optical density (IOD), IOD in single villi, and the mRNA and protein expression of heat shock protein 70 (Hsp70) were significantly increased (p < 0.05). The results of immunohistochemical analyses revealed that the positive reaction of Hsp70 in the duodenum, jejunum, and ileum of weaned gilts was enhanced in the ZEA treatment, compared with the control. The findings of this study indicate the inclusion of ZEA (1.04 mg/kg) in the diet of gilts reduced the activity of disaccharidase enzymes and induced oxidative stress in the small intestine, thereby indicating that ZEA would have the effect of reducing nutrient absorption in these animals.


2020 ◽  
pp. 1-12
Author(s):  
J.M. Duringer ◽  
H.L. Roberts ◽  
B. Doupovec ◽  
J. Faas ◽  
C.T. Estill ◽  
...  

Interactions between livestock management practices and toxicological outcomes of mycotoxin exposure may explain the range of tolerable toxin levels reported for various species. In the current study, we investigated the effect of concurrent mycotoxin exposure with a high starch diet in 12 beef steers in a partial cross-over experiment using a 21-day treatment period, followed by a 14-day clearance. During the treatment period, animals were assigned to one of two diets: a low mycotoxin control total mixed ration (TMR) (0.2±0.1 mg deoxynivalenol (DON) and 0.2±0.2 mg fumonisins (FUM)/kg TMR) and a high mycotoxin TMR treatment (1.7±0.2 mg DON and 3.5±0.3 mg FUM/kg TMR). We evaluated the impacts of these mycotoxins on performance, physiology and biochemistry; and the ability of the clearance period to return animals to a naïve state in the cross-over model. The lack of acute ruminal acidosis observed indicates that the animals were able to withstand the physiological stresses of the high starch diet, while toxicological outcomes were manifested in minor perturbations of biochemistry and outright performance of exposed animals. Aspartate aminotransferase, cholesterol, fibrinogen and leukocyte count were increased while sorbitol dehydrogenase, bile acids and mean corpuscular volume were decreased in treatment-fed steers, yet were not significantly different than those from control-fed animals. Fusarium toxin exposure significantly decreased ruminal fluid pH, with the clearance period returning animals to a naïve state, as it did for most of the molecular variables measured. Conversely, treatment-fed animals continued to exhibit significantly lower average weekly body weight throughout the treatment period and the first week of the clearance period. While the risk of adverse health effects to fattening cattle from similar doses of DON or FUM as used in the current study is considered low, additional work should be directed towards minimising production losses due to these feed contaminants.


Plant Science ◽  
2019 ◽  
Vol 288 ◽  
pp. 110217 ◽  
Author(s):  
Alexandre Perochon ◽  
Zsolt Váry ◽  
Keshav B. Malla ◽  
Nigel G. Halford ◽  
Matthew J. Paul ◽  
...  
Keyword(s):  

Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 317 ◽  
Author(s):  
David Stadler ◽  
Francesca Lambertini ◽  
Lydia Woelflingseder ◽  
Heidi Schwartz-Zimmermann ◽  
Doris Marko ◽  
...  

Deoxynivalenol (DON), a frequent contaminant of flour, can be partially degraded by baking. It is not clear: (i) How the choice of processing parameter (i.e., ingredients, leavening, and baking conditions) affects DON degradation and thus (ii) how much DON can be degraded during the large-scale industrial production of bakery products. Crackers, biscuits, and bread were produced from naturally contaminated flour using different processing conditions. DON degradation during baking was quantified with the most accurate analytical methodology available for this Fusarium toxin, which is based on liquid chromatography tandem mass spectrometry. Depending on the processing conditions, 0–21%, 4–16%, and 2–5% DON were degraded during the production of crackers, biscuits, and bread, respectively. A higher NaHCO3 concentration, baking time, and baking temperature caused higher DON degradation. NH4HCO3, yeast, vinegar, and sucrose concentration as well as leavening time did not enhance DON degradation. In vitro cell viability assays confirmed that the major degradation product isoDON is considerably less toxic than DON. This proves for the first time that large-scale industrial baking results in partial detoxification of DON, which can be enhanced by process management.


Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 419 ◽  
Author(s):  
Anh-Tuan Tran ◽  
Jeannette Kluess ◽  
Andreas Berk ◽  
Marleen Paulick ◽  
Jana Frahm ◽  
...  

We investigated the effects of feeding sodium sulfite (SoS) treated uncontaminated and Fusarium contaminated maize in a porcine lipopolysaccharide (LPS) challenge model. Eighty piglets (7.59 ± 0.92 kg body weight [BW]) were equally assigned to one of four experimental diets containing 10% maize, either uncontaminated and untreated (CON−, 0.09 mg deoxynivalenol [DON]/kg diet) or uncontaminated and SoS-treated (CON+, wet-preserved with 5 g SoS/kg maize; 0.05 mg DON/kg diet), or prepared with 10% of a Fusarium contaminated maize containing mainly deoxynivalenol (DON), either contaminated and untreated (FUS−, 5.36 mg DON/kg diet), or contaminated and SoS-treated (FUS+, wet-preserved with 5 g SoS/kg maize; 0.83 mg DON/kg diet). At day 42 of experiment, ten pigs of each group were injected intraperitoneally with either 7.5 µg LPS/kg BW or placebo (0.9% NaCl). At 120 min after injection, blood samples were collected to analyse TNF-α, hematological profile, clinical biochemistry as well as the redox status. A significant increase in body temperature and cytokine TNF-α concentration was observed in the LPS-injected piglets. Results for hematology, clinical chemistry and redox status indicate no effects of SoS treatment, with exception of neutrophil counts being significantly more pronounced after feeding the SoS treated FUS maize. In conclusion, SoS treatment of maize did not modulate the LPS-induced acute inflammation.


Sign in / Sign up

Export Citation Format

Share Document