Determination of particle density in two-phase flow

1981 ◽  
Vol 40 (2) ◽  
pp. 147-150 ◽  
Author(s):  
S. A. Senkovenko ◽  
A. G. Sutugin
1993 ◽  
Vol 115 (4) ◽  
pp. 781-783 ◽  
Author(s):  
Kiyoshi Minemura ◽  
Tomomi Uchiyama

This paper is concerned with the determination of the performance change in centrifugal pumps operating under two-phase flow conditions using the velocities and void fractions calculated under the assumption of an inviscid bubbly flow with slippage between the two phases. The estimated changes in the theoretical head are confirmed with experiments within the range of bubbly flow regime.


1985 ◽  
Vol 21 (6) ◽  
pp. 713-718
Author(s):  
G. I. Levashenko ◽  
V. I. Antsulevich ◽  
A. I. Didyukov ◽  
V. A. Vazyulin
Keyword(s):  

2006 ◽  
Vol 84 (1) ◽  
pp. 40-53 ◽  
Author(s):  
S.M. Richardson ◽  
G. Saville ◽  
S.A. Fisher ◽  
A.J. Meredith ◽  
M.J. Dix

Author(s):  
Xianfang Wu ◽  
Xiao Tian ◽  
Minggao Tan ◽  
Houlin Liu

Abstract As a typical fluid mechanics problem, pump blockage has always been a hot research topic. The obtaining of the distribution of coarse particles in the solid-liquid two-phase flow pump is the basis of improving its non-blocking performance. High-speed photography technique is applied to do visualizing test and research on the distribution of coarse particles in a double blade pump. The effects of particle concentration, particle density and particle diameter on the distribution of coarse particles in the solid-liquid two-phase flow pump at different phases are studied. Besides, the variation of hydraulic performance of the double blade pump under different parameters is also analyzed. The results show that the particles in the impeller mainly located in the vicinity of the blade pressure surface, and the distribution of the particles in each section of the volute is quite different. The great difference in particle density can result in obviously uneven distribution of particles. With the increase of particle diameter, particle density and particle concentration, the pump head and efficiency both decrease while the shaft power increase on the contrary. This research results can also provide a basis for the optimization design of solid-liquid two-phase flow pumps.


Sign in / Sign up

Export Citation Format

Share Document