Calculating the integral characteristics for a compressible stream of an ideal gas in the case of adiabatic flow

1969 ◽  
Vol 16 (4) ◽  
pp. 461-466
Author(s):  
A. F. Gandel'sman ◽  
B. A. Kader ◽  
G. G. Katsnel'son
Author(s):  
Yoon-Shik Shin ◽  
Dara W. Childs

Predictions are presented for an annular gas seal that is representative of the division-wall seal of a back-to-back compressor or the balance-piston seal of an in-line compressor. A 2-control-volume bulk-flow model is used including the axial and circumferential momentum equations and the continuity equations. The basic model uses a constant temperature prediction (ISOT) and an ideal gas law as an equation of state. Two variations are used: adding the energy equation with an ideal gas law (IDEAL), and adding the energy equation with real gas properties (REAL). The energy equations assume adiabatic flow. The ISOT model has been used for prior calculations. Concerning predictions of static characteristics, the calculated mass leakage rate was, respectively, 9.46, 9.55 and 7.87 kg/s for ISOT, IDEAL, and REAL. For rotordynamic coefficients, predicted effective stiffness coefficients are comparable for the models at low excitation frequencies. At running speed, REAL predictions are roughly 40% lower than ISOT, which could results in lower predicted critical speeds. Predicted effective damping coefficients are also generally comparable. REAL and IDEAL predictions for the cross-over frequency is approximately 20% lower than ISOT. REAL predictions for effective damping are modestly lower in the frequency range of 40 to 50% of running speed where higher damping values are desired.


Author(s):  
E.А. Грановський ◽  
В.В. Смалій

Modern problems of quantitative risk assessment require a development of more sophisticated types of so-called formation models. The formation models give all the information about an accidental leakage due the depressurization needed for quantitative estimation of the dangerous substances accumulating in the environment and further calculation of impact factors on humans, buildings etc. Common type of depressurization is a release of gaseous substances throughout the accidental hole on the surface of apparatus or pipeline. The pipeline connecting two vessels and a hole occurred on the pipeline as well as streams of vapour phase moving inside the pipelines and throughout the hole is a classical example of graph theory transport network problem. Thereby the model of stationary gas network based on equations of subsonic and choked adiabatic flow (for ideal gas) with accounting of mixing processes has been proposed. The solution with applying of graph theory, linear algebra and numerical analysis has been found.The gas net is represented as an oriented graph with nodes as a pressure-points and lines as pipelines. Case of incorrect estimation of flows directions has been studied and the problem of solving algorithm’s self-correction has been arisen. The method of incidence matrix correction during solving process has been developed and applied. The Newton’s method of non-linear equations system solving has been applied and specific method of Jacoby matrix correction has been developed.The behaviour of gas network model has been studied on example of a hydrocarbons’ mixture leakage from an accidental hole on the pipeline connecting two vessels. Results of numerical simulation experiments showed good agreement of model with basic laws of ideal gas adiabatic flow movement and gas network system in general. The directions of flows were in agreement with pressures’ differences on the lines as well as material and energy conservation laws have been observed. Model can be applied in numerical risks analysis for modelling of accidental processes of gaseous substances leaks as well as for the transport problems of chemical technology or educational purposes.


2018 ◽  
Vol 77 (17) ◽  
pp. 1485-1495
Author(s):  
S. A. Pogarsky ◽  
Leonid M. Lytvynenko ◽  
D. V. Mayboroda ◽  
A. V. Poznyakov

2020 ◽  
Author(s):  
Nayyereh hatefi ◽  
William Smith

<div>Ideal{gas thermochemical properties (enthalpy, entropy, Gibbs energy, and heat capacity, Cp) of 49 alkanolamines potentially suitable for CO2 capture applications and their carbamate and protonated forms were calculated using two high{order electronic structure methods, G4 and G3B3 (or G3//B3LYP). We also calculate for comparison results from the commonly used B3LYP/aug-cc-pVTZ method. This data is useful for the construction of molecular{based thermodynamic models of CO2 capture processes involving these species. The Cp data for each species over the temperature range 200 K{1500 K is presented as functions of temperature in the form of NASA seven-term polynomial expressions, permitting the set of thermochemical properties to be calculated over this temperature range. The accuracy of the G3B3 and G4 results is estimated to be 1 kcal/mol and the B3LYP/aug-cc-pVTZ results are of nferior quality..</div>


Sign in / Sign up

Export Citation Format

Share Document