piston seal
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 19)

H-INDEX

5
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal ◽  
Yimer Mohammed Hassen

This study demonstrates the application of parametric accelerated life testing (ALT) as a procedure to identify design deficiencies and correct them in generating a reliable quantitative (RQ) specification. It includes: (1) a system BX lifetime that X% of a product population fails with a parametric ALT scheme, (2) fatigue design, (3) ALTs with alternations, and (4) judgement as to whether the design(s) secures the desired BX lifetime. A (generalized) life–stress model through the linear transport process and a sample size formulation are suggested. A pneumatic cylinder in a machine tool was used as a case study. The cylinder was failing in a flexible manufacturing system. To reproduce the failure and modify the design, a parametric ALT was performed. At the first ALT, the metal seal made of nickel-iron alloy (36% Ni) partially cracked and chipped and had a crisp metal sound. It was modified by changing the seal from a metal to a polymer (silicone rubber). At the second ALT, the piston seal leaked due to seal hardening and wear. The failure modes of the silicone seal in the laboratory tests were similar to those returned from the field. For the third ALT, the seal material was changed from silicone rubber to (thermoset) polyurethane. There were no concerns during the third ALT and the lifetime of the pneumatic cylinder was shown to have a B1 life of 10 years.


2021 ◽  
Author(s):  
Min Zhang ◽  
Dara W. Childs

Abstract In recent years, multiphase pumps have become more and more popular because of the capability to simplify the process, reduce the footprint, and lower the cost. To compensate for the axial thrust force, an annular seal is normally used as a balance piston seal, and the labyrinth seal is one of the choices. A typical labyrinth seal consists of a surface with teeth and a smooth surface. The teeth are either on the rotor or the stator. To protect the machine, one side (either the teeth or the smooth surface) is made of a material that can be safely sacrificed during a rub. After the rub, the teeth clearance is increased. This paper studies the impact of the increased teeth clearance on the performance of the labyrinth seal under oil-rich bubbly flow conditions. The test fluid is a mixture of silicone oil (PSF 5cSt) and air with inlet Gas Volume Fraction GVF up to 9%. Tests are conducted with pressure drop PD = 34.5 bars, rotor speed ω = 5 krpm, and radial tooth clearance Cr = 0.102 mm and 0.178 mm. Test results show that, for all test conditions (before and after injecting air bubbles into the oil flow), increasing Cr from 0.102 mm to 0.178 mm increases the mass flow rate by about 40% but barely changes the test seal’s rotordynamic coefficients; i.e., the increased tooth clearance would not change the pump vibration performance.


2021 ◽  
Author(s):  
Giuseppe Vannini ◽  
Benjamin Defoy ◽  
Manjush Ganiger ◽  
Carlo Mazzali

Abstract The design and experimental activity presented in this paper is related to a novel hybrid seal which is intended to work as a balance piston seal in an AMBs levitated high-pressure (about 300 bar delivery pressure) motor-compressor. The typical solution adopted for balance piston application is a damper seal (e.g. honeycomb seal), as the rotordynamic stability is a primary focus. However, due to interactions between the AMB controller and seal high stiffness level, the aforementioned selection is not so straightforward. After a review of the state of the art it was found that a combination of some conventional geometries (e.g. labyrinth and honeycomb) can be adopted to achieve the desired target. The design was done using a novel tool combining the validated bulk flow codes for each geometry. Moreover, a CFD analysis, based on some literature references, was carried out as a final verification of the design. The experimental activity was then performed at the Authors’ internal seal test rig. As in typical rotordynamic seal testing activity, the operating parameters leveraged to explore performance sensitivity are rotational speed, inlet pressure, pressure ratio and inlet swirl level. The outcome was satisfactory both in terms of leakage and rotordynamic coefficients.


Author(s):  
Dibo Pan ◽  
Haijun Xu ◽  
Bolong Liu ◽  
Congnan Yang

The sealing characteristics of an annular power cylinder based on the Twin-rotor piston engine are studied, which provides a theoretical foundation for the sealing design of a new high-power density piston engine. In this paper, the basis thermodynamic realization process of an annular power cylinder is presented. The Runge Kutta equation is used to establish the coupled leakage model of adjacent working chambers under annular piston seal. And the sealing performance of the annular power cylinder is analyzed in detail. Moreover, the influence of rotor speed and compression ratio on the sealing characteristics and leakage is studied. Finally, some tests are carried out to verify the sealing principle and simulation results, which verifies the theoretical basis of simulation analysis. Results show that there are double pressure peaks in the leakage chamber between two working chambers, which is beneficial to reduce the leakage rate. Besides, increasing the speed and decreasing the compression ratio can help to reduce gas leakage. Furthermore, the effects of speed variation on the leakage are only significant when rotating at low speed. Changing the compression ratio has a greater effect on the slope of the leakage curve at a low compression ratio, and the lower the compression ratio, the better the sealing effect.


2021 ◽  
Vol 313 ◽  
pp. 08004
Author(s):  
Matthias Lottmann ◽  
Zachary de Rouyan ◽  
Linda Hasanovich ◽  
Steven Middleton ◽  
Michael Nicol-Seto ◽  
...  

This paper documents the ongoing design process of a Stirling engine prototype for a source temperature of 95 °C, aiming to achieve shaft power on the order of 100 Watts. The engine will serve to produce experimental data for the validation of a numerical low temperature Stirling model. The higher-level motivation is to assess the technical and economical potential of producing power from abundant sources of low temperature heat by using Stirling engines. Design decisions are governed by the goals of minimizing energy losses and maximizing the variability of operating points through variable heat exchanger geometry, compression ratio and charge pressure. The resulting design is a beta engine with a total gas volume around 100 liters. It features displacer and power pistons in a combined cylindrical working space and a mechanism using pivoting links similar to a bellcrank. The stroke of the power piston is adjustable while maintaining a constant top dead center position. A component critical for friction is the power piston seal, for which a low friction rolling seal and a conventional sliding seal were considered. As of June 2021, the development is at an advanced state and the first set of components are entering production.


2021 ◽  
Vol 143 (1) ◽  
Author(s):  
Min Zhang ◽  
Dara W. Childs

Abstract With the increasing demand of the oil and gas industry, many pump companies are developing multiphase pumps, which can handle liquid–gas flow directly without separating the liquid from a mixed flow. The see-through labyrinth seal is one of the popular types of noncontact annular seals that act as a balancing piston seal to reduce the axial thrust of a high-performance centrifugal pump. The see-through labyrinth seal also generates reaction forces that can significantly impact the rotordynamic performance of the pump. Multiphase pumps are expected to operate from pure-liquid to pure-gas conditions. Zhang and Childs (2019) (Zhang, M., and Childs, D., 2019, “A Study on the Leakage and Rotordynamic Performance of a Long Labyrinth Seal Under Mainly-Air Conditions,” ASME J. Eng. Gas Turbines Power, 141(12), p. 121024) conducted a comprehensive experimental study on the performance (leakage and rotordynamic coefficients) of a see-through labyrinth seal under mainly gas conditions. This paper continues Zhang and Childs (2019) (Zhang, M., and Childs, D., 2019, “A Study on the Leakage and Rotordynamic Performance of a Long Labyrinth Seal Under Mainly-Air Conditions,” ASME J. Eng. Gas Turbines Power, 141(12), p. 121024) research and studies the performance of the see-through tooth-on-stator labyrinth seal under mainly liquid conditions. The test seal's inner diameter, length, and radial clearance are 89.256 mm, 66.68 mm, and 0.178 mm, respectively. The test fluid is a mixture of air and paper silicone oil (PSF-5cSt), and the inlet gas volume fraction (GVF) varies from zero to 12%. Tests are conducted at an exit pressure of 6.9 bars, an inlet temperature of 39.1 °C, three pressure drops (PDs) (27.6 bars, 34.5 bars, and 48.3 bars), and three rotating speeds ω (5 krpm, 10 krpm, and 15 krpm). The seal is always concentric with the rotor, and there is no intentional fluid prerotation at the seal inlet. The air presence in the oil flow significantly impacts the leakage as well as the dynamic forces of the test seal. The first air increment (increasing inlet GVF from 0% to 3%) slightly increases the leakage mass flow rate, while further air increments steadily decrease the leakage mass flow rate. For all test conditions, the leakage mass flow rate does not change as ω increases from 5 krpm to 10 krpm but decreases as ω is further increased to 15 krpm. The reduction in the leakage mass flow rate indicates that there is an increase in the friction factor, and there could be a highly possible flow regime change as ω increases from 10 krpm to 15 krpm. For ω ≤ 10 krpm, effective stiffness Keff increases as inlet GVF increases. Keff represents the test seal's total centering force on the pump rotor. The increase of Keff increases the seal's centering force and would increase the pump rotor's critical speeds. Ceff indicates the test seal's total damping force on the pump rotor. For ω ≤ 10 krpm, Ceff first decreases as inlet GVF increases from zero to 3%, and then remains unchanged as inlet GVF is further increased to 12%. For ω = 15 krpm, Keff first increases as inlet GVF increases from zero to 3% and then decreases as inlet GVF is further increased. As inlet GVF increases, Ceff steadily decreases for ω = 15 krpm.


Author(s):  
Vinod J ◽  
Bikash Kumar Sarkar

Hydropower system has great attention due to the cheapest and simplest renewable power generation, available potential and environmental concern. Francis turbine has wide operating range compare to other hydro turbine runner. Electrohydraulic Francis turbine inlet guide vane system has advantages like, high power density, self-lubrication property, very good controllability and rugged. Francis turbine inlet guide vane system consists of inlet guide vane actuation system, ring inlet guide blade arrangement, and controller. The main challenges with the electrohydraulically actuated inlet guide vane system are nonlinear characteristic, parametric uncertainty, and external disturbances. Further with respect to the real-life application of the electrohydraulic actuator piston seal damage may occur due to fitting problem of the seal, impurities in the hydraulic oil, high temperature of the hydraulic oil and so on. Recently some researchers are reported on modelling accuracy, accurate controller design and stability analysis. In the present study mathematical model of the Francis turbine has been developed based on velocity diagram to capture effect of water flow dynamics on turbine power generation with the consideration of Euler’s equation of turbo machinery. Detailed mathematical model of the inlet guide vane actuating system has been integrated with Francis turbine model. Artificial neural network 2 degree-of-freedom proportional integral derivative controller has been developed for Francis turbine power/speed control. The controller performance has been studied with the consideration of actuator piston seal damage. The controller performance has been studied with 30%, 60%, and 90% step increase of power demand. The controller performance also has been studied with 0.005 and 0.05 Hz frequency sinusoidal power demand. The proposed controller performance has been compared with conventional proportional integral derivative controller through various performance indexes. The proposed controller performances also have been compared with recently reported work due to step increase of torque and step decreases of power demand.


Author(s):  
Min Zhang ◽  
Dara W. Childs

Abstract With the increasing demand of the oil & gas industry, many pump companies are developing multiphase pumps, which can handle liquid-gas flow directly without separating the liquid from a mixed flow. The see-through labyrinth seal is one of the popular types of non-contact annular seals that act as a balancing piston seal to reduce the axial thrust of a high-performance centrifugal pump. The see-through labyrinth seal also generates reaction forces that can significantly impact the rotordynamic performance of the pump. Multiphase pumps are expected to operate from pure-liquid to pure-gas conditions. Zhang et al. (2019) conducted a comprehensive experimental study on the performance (leakage and rotordynamic coefficients) of a see-through labyrinth seal under mainly-gas conditions. This paper continues Zhang et al.’s (2019) research and studies the performance of the see-through TOS (tooth-on-stator) labyrinth seal under mainly-liquid conditions. The test seal’s inner diameter, length, and radial clearance are 89.256 mm, 66.68 mm, and 0.178 mm, respectively. The test fluid is a mixture of air and silicone oil (PSF-5cSt), and the inlet GVF (gas volume fraction) varies from zero to 12%. Tests are conducted at an exit pressure of 6.9 bars, an inlet temperature of 39.1 °C, three pressure drops PDs (27.6 bars, 34.5 bars, and 48.3 bars), and three rotating speeds ω (5 krpm, 10 krpm, and 15 krpm). The seal is always concentric with the rotor, and there is no intentional fluid pre-rotation at the seal inlet. The air presence in the oil flow significantly impacts the leakage as well as the dynamic forces of the test seal. The first air increment (increasing inlet GVF from 0% to 3%) slightly increases the leakage mass flow rate, while further air increments steadily decrease the leakage mass flow rate. For all test conditions, the leakage mass flow rate does not change as ω increases from 5 krpm to 10 krpm but decreases as ω is further increased to 15 krpm. The reduction in the leakage mass flow rate indicates that there is an increase in the friction factor, and there could be a highly possible flow regime change as ω increases from 10 krpm to 15 krpm. For ω ≤ 10 krpm, effective stiffness Keff increases as inlet GVF increases. Keff represents the test seal’s total centering force on the pump rotor. The increase of Keff increases the seal’s centering force and would increase the pump rotor’s critical speeds. Ceff indicates the test seal’s total damping force on the pump rotor. For ω ≤ 10 krpm, Ceff first decreases as inlet GVF increases from zero to 3%, and then remains unchanged as inlet GVF is further increased to 12%. For ω = 15 krpm, Keff first increases as inlet GVF increases from zero to 3% and then decreases as inlet GVF is further increased. As inlet GVF increases, Ceff steadily decreases for ω = 15 krpm.


Author(s):  
Wang Wei ◽  
Wenjian Xiao ◽  
Xiaoping Ouyang ◽  
Shengrong Guo ◽  
Huayong Yang

Abstract Reciprocating seals are vital components in hydraulic systems. As a kind of reciprocating seal, the glyd-ring is commonly used as a piston seal. For the sealing characteristics of aircraft glyd-ring under severe working conditions, systematic research and experimental verification are not sufficient. The liquid-solid coupling model based on mixed lubrication theory is established in order to analyze the characteristics of the glyd-ring seal in the cylinder piston. The contact stress distribution on the glyd-ring under different fluid pressures or temperatures is discussed through finite element analysis. The mechanical analysis of solids and fluids are carried out separately, and the thickness of the fluid film is continuously updated until the results of the deformation analysis converged. According to the calculation results obtained by this model, three characteristics of the glyd-ring seal (static contact pressure, film thickness, friction force) are discussed. As the fluid pressure rises, the contact pressure in the sealing area increases by a rate which is greater than that of the corresponding fluid pressure, the seal length is shortened, the fluid film thickness is reduced, and the frictional force gradually increases, this force increase is proved by test data. As the temperature rises, the contact pressure in the seal area (near the O-ring) increases by a rate which is greater than that of the corresponding fluid pressure, the seal length increases, the oil film thickness decreases, and the frictional force increases significantly.


Sign in / Sign up

Export Citation Format

Share Document