Correlation between adult transformation and aldehyde oxidase staining pattern in wing discs ofApterous genotypes inDrosophila melanogaster

1982 ◽  
Vol 191 (4) ◽  
pp. 285-288 ◽  
Author(s):  
Robert Whittle ◽  
Tom Sprey
Genetics ◽  
1987 ◽  
Vol 115 (2) ◽  
pp. 283-294
Author(s):  
Th E Sprey ◽  
David T Kuhn

ABSTRACT The aldehyde oxidase (Aldox) distribution pattern was determined for wing discs of partial hybrids between D. melanogaster and D. simulans. In these animals the regulation of Aldox activity is not uniform over the disc epithelium as both cis-dominant and trans -acting control were evident in different regions of the disc. The Aldox expression was shown to be regulated by loci on the X chromosome, 2L and 3R of D. melanogaster and 2R and 3R of D. simulans.


Author(s):  
J.S. Ryerse

Gap junctions are intercellular junctions found in both vertebrates and invertebrates through which ions and small molecules can pass. Their distribution in tissues could be of critical importance for ionic coupling or metabolic cooperation between cells or for regulating the intracellular movement of growth control and pattern formation factors. Studies of the distribution of gap junctions in mutants which develop abnormally may shed light upon their role in normal development. I report here the distribution of gap junctions in the wing pouch of 3 Drosophila wing disc mutants, vg (vestigial) a cell death mutant, 1(2)gd (lethal giant disc) a pattern abnormality mutant and 1(2)gl (lethal giant larva) a neoplastic mutant and compare these with wildtype wing discs.The wing pouch (the anlagen of the adult wing blade) of a wild-type wing disc is shown in Fig. 1 and consists of columnar cells (Fig. 5) joined by gap junctions (Fig. 6). 14000x EMs of conventionally processed, UA en bloc stained, longitudinally sectioned wing pouches were enlarged to 45000x with a projector and tracings were made on which the lateral plasma membrane (LPM) and gap junctions were marked.


Author(s):  
M.K. Lamvik ◽  
L.L. Klatt

Tropomyosin paracrystals have been used extensively as test specimens and magnification standards due to their clear periodic banding patterns. The paracrystal type discovered by Ohtsuki1 has been of particular interest as a test of unstained specimens because of alternating bands that differ by 50% in mass thickness. While producing specimens of this type, we came across a new paracrystal form. Since this new form displays aligned tropomyosin molecules without the overlaps that are characteristic of the Ohtsuki-type paracrystal, it presents a staining pattern that corresponds to the amino acid sequence of the molecule.


Xenobiotica ◽  
1996 ◽  
Vol 26 (1) ◽  
pp. 1035-1055 ◽  
Author(s):  
A. A. Acheampong ◽  
D-S. Chien ◽  
S. Lam ◽  
S. Vekich ◽  
A. Breau ◽  
...  

1999 ◽  
Vol 26 (12) ◽  
pp. 791-796
Author(s):  
Ken Hashimoto ◽  
Kazuaki Tanaka ◽  
Indira Misra ◽  
Tor Shwayder ◽  
Ali Moiin

1971 ◽  
Vol 49 (3) ◽  
pp. 883-898 ◽  
Author(s):  
A. Nakamura ◽  
F. Sreter ◽  
J. Gergely

Tryptic and chymotryptic light meromyosin paracrystals from red and cardiac muscles of rabbit show a negative and positive staining pattern with uranyl acetate and phosphotungstate that sharply differs from that of white muscle light meromyosin paracrystals. The main periodicity of about 430 A is the same regardless of the source of light meromyosin. The results are discussed in terms of the molecular structure and the functional properties of various myosins.


Sign in / Sign up

Export Citation Format

Share Document