One-dimensional propagation of a monochromatic light pulse in absorbing media

1974 ◽  
Vol 13 (5) ◽  
pp. 748-751
Author(s):  
E. L. Tyurin ◽  
V. A. Shcheglov
1993 ◽  
Vol 47 (7) ◽  
pp. 863-868 ◽  
Author(s):  
Satoshi Takahashi ◽  
Jeung Sun Ahn ◽  
Shuji Asaka ◽  
Teizo Kitagawa

A system for multichannel Fourier transform spectroscopy was constructed by using a CCD detector and an interferometer consisting of Savart plate held between two polarizers, and practical problems associated with its application to Raman experiments were investigated. The novel idea of the present system lies in avoiding the aliasing distortion, seen in the spectrum measured with a one-dimensional multichannel detector, by arranging the principal axis of the sensitized plane of the CCD detector so that it is not coincident with the direction of the fringe pattern of the interferogram. The observed interferogram suffered geometrical distortion due to incompleteness of the Savart plate. In order to circumvent this problem, an algorithm for correcting this distortion by referring to the interferogram of appropriate monochromatic light was successfully developed. The resolution of a Raman spectrum obtained for indene was ∼40 cm−1, in agreement with the theoretical value expected for this system.


2002 ◽  
Vol 16 (4) ◽  
pp. 529-536
Author(s):  
F. Dorri-Nowkoorani ◽  
R. L. Dougherty

Author(s):  
Runming Pan ◽  
Chengwei Ji ◽  
Kaifeng Cao

The core components of the precision instruments such as spectroscope and spectrograph is grating. And one-dimensional multi-slot transmission amplitude grating is the most simple, and its basic theory is also an important basis used as reference when perform grating design, this shows the important status of transmission amplitude grating in spectroscopy study. In this paper, the theory of Fraunhofer Diffraction in optics was used in introducing the basic conclusion and spectral pattern characteristics, with the concrete experiment the spectral pattern of transmission amplitude grating in the monochromatic light and complex light is showed, then the theoretical analysis was done by mathematical reasoning and numerical simulation, the specific expression of spectral characteristic parameters in transmission amplitude was study to confirm the effects of these parameters on the produced spectral, results show that these parameters are independently. Through these studies, we understand that in the design of gratings should pay attention to the full consideration of these parameters and how to specifically improve the performance of the grating.


Author(s):  
Shamino Wang ◽  
Hernan Erlig ◽  
Harold R. Fetterman ◽  
Eli Yablonovitch ◽  
Victor Grubsky ◽  
...  

1990 ◽  
Vol 209 ◽  
Author(s):  
M. S. Wang ◽  
J. M. Borrego

ABSTRACTContactless deep level transient spectroscopy using microwave reflection at 35 GHz is presented and it is proved to be a powerful technique for characterizing trapping levels in semiconductors without the necessity of special sample preparation. The technique consists of measuring the transient decay in photoconductivity after a monochromatic light pulse has been applied to the semiconductor. The photoconductivity after the light pulse is caused by emission of carriers from trapping levels filled during the light pulse and by scanning the sample temperature it is possible to determine their activation energy. On Si-implanted layers on LEC grown SI-GaAs substrate we have detected three trapping levels, located at 0.15, 0.18 and 0.27 eV below the conduction band, by using a 1060 nm YAG laser, and one level, 0.13 eV below the conduction band, by using a 633 nm HeNe laser. The technique has been applied to LEC SI-GaAs and no trapping levels have been observed above the EL2 level.


Sign in / Sign up

Export Citation Format

Share Document