Contactless Deep Level Transient Spectroscopy Using Microwave Reflection

1990 ◽  
Vol 209 ◽  
Author(s):  
M. S. Wang ◽  
J. M. Borrego

ABSTRACTContactless deep level transient spectroscopy using microwave reflection at 35 GHz is presented and it is proved to be a powerful technique for characterizing trapping levels in semiconductors without the necessity of special sample preparation. The technique consists of measuring the transient decay in photoconductivity after a monochromatic light pulse has been applied to the semiconductor. The photoconductivity after the light pulse is caused by emission of carriers from trapping levels filled during the light pulse and by scanning the sample temperature it is possible to determine their activation energy. On Si-implanted layers on LEC grown SI-GaAs substrate we have detected three trapping levels, located at 0.15, 0.18 and 0.27 eV below the conduction band, by using a 1060 nm YAG laser, and one level, 0.13 eV below the conduction band, by using a 633 nm HeNe laser. The technique has been applied to LEC SI-GaAs and no trapping levels have been observed above the EL2 level.

2006 ◽  
Vol 957 ◽  
Author(s):  
Yahya Alivov ◽  
Xiao Bo ◽  
Fan Qian ◽  
Daniel Johnstone ◽  
Cole Litton ◽  
...  

ABSTRACTThe conduction band offset of n-ZnO/n-6H-SiC heterostructures fabricated by rf-sputtered ZnO on commercial n-type 6H-SiC substrates has been measured. Temperature dependent current-voltage characteristics, photocapacitance, and deep level transient spectroscopy measurements showed the conduction band offsets to be 1.25 eV, 1.1 eV, and 1.22 eV, respectively.


1998 ◽  
Vol 510 ◽  
Author(s):  
P.N.K. Deenapanray ◽  
F.D. Auret ◽  
M.C. Ridgway ◽  
S.A. Goodman ◽  
G. Myburg

AbstractWe report on the electrical properties of defects introduced in epitaxially grown n-Si by 1 keV He-, Ne-, and Ar-ion bombardment. Epitaxial layers with different O contents were used in this study. We demonstrate using deep level transient spectroscopy that the low energy ions introduced a family of similarly structured defects (DI) with electronic levels at ∼0.20 eV below the conduction band. The introduction of this set of identical defects was not influenced by the presence of O. Ion bombardment of O-rich Si introduced another family of prominent traps (D2) with levels close to the middle of the band gap. Both sets of defects were thermally stable up to ∼400 °C, and their annealing was accompanied by the introduction of a family of secondary defects (D3). The “D3” defects had levels at ∼0.21 eV below the conduction band and were thermally stable at 650 °C. We have proposed that the “DI”, “D2”, and “D3” defects are higherorder vacancy clusters (larger than the divacancy) or complexes thereof.


2015 ◽  
Vol 54 (11) ◽  
pp. 111301 ◽  
Author(s):  
Tetsuo Hatakeyama ◽  
Mitsuru Sometani ◽  
Kenji Fukuda ◽  
Hajime Okumura ◽  
Tsunenobu Kimoto

1996 ◽  
Vol 68 (25) ◽  
pp. 3591-3593 ◽  
Author(s):  
P. F. Baude ◽  
M. A. Haase ◽  
G. M. Haugen ◽  
K. K. Law ◽  
T. J. Miller ◽  
...  

2014 ◽  
Vol 778-780 ◽  
pp. 603-606 ◽  
Author(s):  
Einar Ö. Sveinbjörnsson ◽  
Olafur Gíslason

Using Deep Level Transient Spectroscopy (DLTS) on n-type MOS capacitors we find that thermal oxidation of 4H-SiC produces deep traps at or near the SiO2/SiC interface with two well defined DLTS peaks. The traps are located ~ 0.85 V and ~ 1.0 eV below the SiC conduction band edge and are present in wet and dry oxides as well as oxides produced by sodium enhanced oxidation and oxides grown in N2O. The deep traps are located at the SiO/SiC interface after oxidation at 1150°C but do extend further into the SiC epilayer after oxidation at 1240°C. We identify these traps as ON1 and ON2 which been observed in epitaxial layers after oxidation at very high temperatures (1200-1500°C) [.


2011 ◽  
Vol 178-179 ◽  
pp. 192-197 ◽  
Author(s):  
Helge Malmbekk ◽  
Lasse Vines ◽  
Edouard V. Monakhov ◽  
Bengt Gunnar Svensson

Interaction between hydrogen (H) and irradiation induced defects in p-type silicon (Si) have been studied in H implanted pn-junctions, using deep level transient spectroscopy (DLTS), as well as minority carrier transient spectroscopy (MCTS). Two H related levels at Ev+0.27 eV and Ec-0.32 eV have been observed (Ev and Ec denote the valence and conduction band edge, respectively). Both levels form after a 10 min anneal at 125C, concurrent with the release of H from the boron-hydrogen (B-H) complex. The correlated formation rates and absolute concentrations of the two levels support the notion that they are due to the same defect. In addition, a level at Ec-0.45 eV is observed and discussed in terms of vacancy-hydrogen related defects.


2008 ◽  
Vol 600-603 ◽  
pp. 755-758 ◽  
Author(s):  
Fredrik Allerstam ◽  
Einar Ö. Sveinbjörnsson

This study is focused on characterization of deep energy-level interface traps formed during sodium enhanced oxidation of n-type Si face 4H-SiC. The traps are located 0.9 eV below the SiC conduction band edge as revealed by deep level transient spectroscopy. Furthermore these traps are passivated using post-metallization anneal at 400°C in forming gas ambient.


Sign in / Sign up

Export Citation Format

Share Document