Energy dissipation calculations for a linear viscoelastic body under impact loading

1976 ◽  
Vol 10 (4) ◽  
pp. 578-583 ◽  
Author(s):  
Yu. O. Yanson
2015 ◽  
Vol 42 (4) ◽  
pp. 277-289
Author(s):  
Miodrag Zigic ◽  
Nenad Grahovac

We study the seismic response of two adjacent structures connected with a dry friction damper. Each of them consists of a viscoelastic rod and a rigid block, which can slide without friction along the moving base. A simplified earthquake model is used for modeling the horizontal ground motion. Energy dissipation is taken by the presence of the friction damper, which is modeled by the set-valued Coulomb friction law. Deformation of viscoelastic rods during the relative motion of the blocks represents another way of energy dissipation. The constitutive equation of a viscoelastic body is described by the fractional Zener model, which includes fractional derivatives of stress and strain. The problem merges fractional derivatives as non-local operators and theory of set-valued functions as the non-smooth ones. Dynamical behaviour of the problem is governed by a pair of coupled multi-valued differential equations. The posed Cauchy problem is solved by use of the Gr?nwald-Letnikov numerical scheme. The behaviour of the system is analyzed for different values of system parameters.


2013 ◽  
Vol 19 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
J. Buchar ◽  
I. Kubiš ◽  
S. Gajdůšek ◽  
I. Křivánek

The paper deals with the study of the effect of cheese ripening on parameters of a rheological model of cheese mechanical behaviour. The Edam cheese has been tested by the method of the Hopkinson Split Pressure Bar. The original method of the evaluation of viscoelastic properties has been used. The rheological model of the three element linear viscoelastic body, so called “standard linear solid” has been used. This model successfully describes the experimentally observed deformation behaviour of cheese specimens. The effect of the time of cheese ripening on the parameters of the rheological model has been demonstrated.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T63-T81 ◽  
Author(s):  
Renhu Yang ◽  
Weijian Mao ◽  
Xu Chang

Energy is absorbed and attenuated when seismic waves propagate in real earth media. Hence, the viscoelastic medium needs to be considered. There are many ways to construct the viscoelastic body, in which the generalized standard linear viscoelastic body is the most representative one. For viscoelastic wave propagation and imaging, it is very important to obtain a compact and efficient viscoelastic equation. Because of this, we derived a set of simplified viscoelastic equations in isotropic media on the basis of the standard linear solid body and the constitutive relation for a linear viscoelastic isotropic solid. The simplified equations were composed of the linear equations of momentum conservation, the stress-strain relations, and the memory variable equations. During the derivation of the equations, the Lamé differentiation matrix, which has a similar form to the stiffness matrix and indicates the relations between viscoelastic and elastic stiffness matrices, was introduced to simplify the memory variable equations. Analogous to the elastic equations, the simplified equations have symmetrically compact forms and are very useful for efficient viscoelastic modeling, migration, and inversion. Applied to a 2D simple model and the 2D SEG/EAGE salt model, the results show that our simplified equations are more efficient in computation than Carcione’s equations.


Author(s):  
Šárka Nedomová

The present study was performed to determine the influence of fat content and ripening time on changes in the viscoelastic properties and, separately, in the viscous and elastic properties of Edam cheese, based namely on the results of a stress–relaxation test. In order to obtain some more detail inside on the cheese rheological behaviour a limited number of the mechanical tests under compression has been performed. The significant effect of the loading rate has been demonstrated. The main aim was to describe the experimental results in terms of the semi-empirical Maxwell model, which describe the rheological properties of cheese during ripening. Results suggest that the tested cheeses behave like linear viscoelastic body. The fat content has no influence on the elasticity as well the viscosity of the cheese during its ripening.


2019 ◽  
Vol 59 (1) ◽  
pp. 275-296 ◽  
Author(s):  
Zhiliang Wang ◽  
Nuocheng Tian ◽  
Jianguo Wang ◽  
Shengqi Yang ◽  
Guang Liu

Sign in / Sign up

Export Citation Format

Share Document