On the Energy Release Rate for Dynamic Transient Anti-Plane Shear Crack Propagation in a General Linear Viscoelastic Body

1988 ◽  
Author(s):  
J. M. Herrmann ◽  
J. R. Walton
1987 ◽  
Vol 54 (3) ◽  
pp. 635-641 ◽  
Author(s):  
J. R. Walton

The steady-state propagation of a semi-infinite, antiplane shear crack is reconsidered for a general, infinite, homogeneous and isotropic linearly viscoelastic body. As with an earlier study, the inertial term in the equation of motion is retained and the shear modulus is only assumed to be positive, continuous, decreasing, and convex. A Barenblatt type failure zone is introduced in order to cancel the singular stress, and a numerically convenient expression for the dynamic Energy Release Rate (ERR) is derived for a rather general class of crack face loadings. The ERR is shown to have a complicated dependence on crack speed and material properties with significant qualitative differences between viscoelastic and elastic material. The results are illustrated with numerical calculations for both power-law material and a standard linear solid.


1991 ◽  
Vol 113 (4) ◽  
pp. 222-229 ◽  
Author(s):  
J. M. Herrmann ◽  
J. R. Walton

The problem of a semi-infinite mode III crack that suddenly begins to propagate at a constant speed is considered for a general linear viscoelastic body. It is shown that the results of an earlier paper for the Laplace transforms of the stress and displacement with the Laplace transform variable s being real and positive are valid, with minor modification, for complex values of s such that Re(s)>0. Therefore, these Laplace transforms can be inverted by means of a Bromwich path integral. Under the assumption that a Barenblatt-type failure zone exists at the crack tip, the energy release rate (ERR) and the work done in the failure zone (WFZ) are calculated through numerical inversion of Laplace transforms. The ERR and WFZ for the standard linear solid and power law material models are contrasted and also compared with the elastic and quasi-static results. The graphs and table illustrate considerable differences in the ERR and WFZ for these different models. These differences may be important to predictions of stable versus unstable crack speeds based upon a critical ERR fracture criterion.


1990 ◽  
Vol 57 (2) ◽  
pp. 343-353 ◽  
Author(s):  
J. R. Walton

An analysis is presented for the dynamic, steady-state propagation of a semi-infinite, mode I crack in an infinite, linearly viscoelastic body. For mathematical convenience, the material is assumed to have a constant Poisson’s ratio, but the shear modulus is only assumed to be decreasing and convex. An expression for the Stress Intensity Factor (SIF) is derived for very general tractions on the crack faces and the Energy Release Rate (ERR) is constructed assuming that a fully developed Barenblatt type failure zone with nonsingular stresses exists at the crack tip and the loadings have a simple exponential form. For comparative purposes, expressions for the ERR are derived for the special cases of dynamic steady-state crack propagation in elastic material and quasi-static crack propagation in viscoelastic material, both with and without a failure zone. Sample calculations are included for power-law material and a standard linear solid in order to illustrate the combined influence of inertial effects, material viscoelasticity, and a failure zone upon the ERR.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 611
Author(s):  
Benshuai Chen ◽  
Guangchun Xiao ◽  
Mingdong Yi ◽  
Jingjie Zhang ◽  
Tingting Zhou ◽  
...  

In this paper, the Voronoimosaic model and the cohesive element method were used to simulate crack propagation in the microstructure of alumina/graphene composite ceramic tool materials. The effects of graphene characteristic size and volume content on the crack propagation behavior of microstructure model of alumina/graphene composite ceramics under different interfacial bonding strength were studied. When the phase interface is weak, the average energy release rate is the highest as the short diameter of graphene is 10–50 nm and the long diameter is 1600–2000 nm. When the phase interface is strong, the average energy release rate is the highest as the short diameter of graphene is 50–100 nm and the long diameter is 800–1200 nm. When the volume content of graphene is 0.50 vol.%, the average energy release rate reaches the maximum. When the velocity load is 0.005 m s−1, the simulation result is convergent. It is proven that the simulation results are in good agreement with the experimental phenomena.


2003 ◽  
Vol 18 (10) ◽  
pp. 2379-2386 ◽  
Author(s):  
Dov Sherman ◽  
Ilan Be'ery

We report on the exact shape of a propagating crack in a plate with a high width/thickness ratio and subjected to bending deformation. Fracture tests were carried out with brittle solids—single crystal, polycrystalline, and amorphous. The shape of the propagating crack was determined from direct temporal crack length measurements and from the surface perturbations generated during rapid crack propagation. The shape of the crack profile was shown to be quarter-elliptical with a straight, long tail; the governing parameter of the ellipse axes is the specimen's thickness at most length of crack propagation. Universality of the crack front shape is demonstrated. The continuum mechanics approach applicable to two-dimensional problems was used in this three-dimensional problem to calculate the quasistatic strain energy release rate of the propagating crack using the formulations of the dynamic energy release rate along the crack loci. Knowledge of the crack front shape in the current geometry and loading configuration is important for practical and scientific aspects.


Author(s):  
Arash Kheyraddini Mousavi ◽  
Seyedhamidreza Alaie ◽  
Maheshwar R. Kashamolla ◽  
Zayd Chad Leseman

An analytical Mixed Mode I & II crack propagation model is used to analyze the experimental results of stiction failed micro cantilevers on a rigid substrate and to determine the critical strain energy release rate (adhesion energy). Using nonlinear beam deflection theory, the shape of the beam being peeled off of a rigid substrate can be accurately modeled. Results show that the model can fit the experimental data with an average root mean square error of less than 5 ran even at relatively large deflections which happens in some MEMS applications. The effects of surface roughness and/or debris are also explored and contrasted with perfectly (atomically) flat surfaces. Herein it is shown that unlike the macro-scale crack propagation tests, the surface roughness and debris trapped between the micro cantilever and the substrate can drastically effect the energy associated with creating unit new surface areas and also leads to some interesting phenomena. The polysilicon micro cantilever samples used, were fabricated by SUMMIT V™ technology in Sandia National Laboratories and were 1000 μm long, 30 μm wide and 2.6 μm thick.


Sign in / Sign up

Export Citation Format

Share Document