Combined determination of the mechanical characteristics of polymer films

1968 ◽  
Vol 1 (5) ◽  
pp. 84-87
Author(s):  
O. F. Shlenskii ◽  
N. N. Khovanskaya ◽  
V. V. Lavrent'ev
2013 ◽  
Vol 66 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Amin Nazer ◽  
Osvaldo Pavez ◽  
Ithamar Toledo

Copper slag is a massive metallurgist waste. Annual production rises up to 24.6 million tons, approximately, and the main environmental impact derived from slag disposal is the usage of great soil extensions and the resulting visual contamination of the landscape. Along time, copper slag has been used in the manufacture of concrete and cement mortars. Thus, with the aim of verifying binder-type influence in the final hardness of mortars, two types of cement were used: regular cement and high initial resistance cement. Copper slag was characterized from the chemical, mineralogical and grading viewpoints. Official Chilean regulations were used in the applied methodology for the determination of some important slag parameters. Compression and flexural strength trials were carried out on cement mortars in specialized laboratories. The obtained results showed that mortars manufactured with copper slag presented a better resistance to compression and flexural strength than mortars manufactured with normal sand, and those made with high initial resistance cement were even better. It can be concluded from this work that copper slag offers optimal mechanical characteristics to be used in the manufacturing of cement mortars, becoming a sustainable and adequate alternative material for usage in the construction industry.


2021 ◽  
Vol 42 ◽  
pp. 57-62
Author(s):  
Maria Stoicănescu

The 1.4301 stainless steel is part of the category of austenitic stainless steels, steels which do no undergo heat treatments in general, as they are intended for hot plastic deformation in particular. The aim of the research presented in this paper was to obtain significantly improved characteristics of the resistance properties in relation to the values obtained under classical conditions, by applying heat treatments. Samples taken from the delivery state material underwent annealing, quenching and ageing heat treatments. Subsequently, the samples thus treated were subjected to tests enabling the determination of the correlations between the heat treatment parameters, the structure and the properties.


2019 ◽  
Vol 135 ◽  
pp. 01102
Author(s):  
Dmitriy Savenkov ◽  
Oleg Kirischiev ◽  
Ylia Kirischieva ◽  
Tatiana Tupolskikh ◽  
Tatiana Maltseva ◽  
...  

The article highlights the issues related to the study of physical and mechanical characteristics of bulk materials, namely internal friction coefficients in static and dynamic modes. An innovative device of the carousel type for determining the frictional characteristics of bulk materials is described, which allows to implement the tasks of practical determination of dynamic coefficients of internal friction. Presented the program, methodology and results of research on the practical study of the internal friction coefficient of typical bulk products of agricultural production in the range of linear velocities of displacement of layers from 0 to 2.79 m/s, the reliability of which is not lower than 0.878.


2003 ◽  
Vol 795 ◽  
Author(s):  
A. Ponchet ◽  
M. Cabié ◽  
L. Durand ◽  
M. Rivoal ◽  
A. Rocher

ABSTRACTThe curvature method which allows to measure the stress in epitaxial layers has been adapted to transmission electron microscopy observations. The samples thinned by the substrate side present some particular mechanical characteristics. The ratio between the substrate thickness and the layer thickness should be taken into account. The experimental conditions allowing a reliable determination of the stress have been established. A finite element calculation has been used to show that the dimensions of the area where the measure is performed can not systematically be neglected. This method has been applied to the semiconducting systems Ga1-xInxAs/GaAs and Ga1-xInxAs/InP.


Sign in / Sign up

Export Citation Format

Share Document