The global distribution of long-term total ozone variations during the period 1957?1975

1979 ◽  
Vol 117 (3) ◽  
pp. 345-354 ◽  
Author(s):  
Julius London ◽  
Samuel J. Oltmans
2018 ◽  
Vol 64 (3) ◽  
pp. 250-261 ◽  
Author(s):  
E. E. Sibir ◽  
V. F. Radionov

The results of observations of total ozone content (TOC) at the Russian Antarctic stations Mirny (66° 34′ N, 93° 01′ E), Novolazarevskaya (70° 46′ S, 11° 50′ E) and Vostok (78° 38′ S, 106° 52′ E) from 1975 to 2017 are presented. Measurements were carried out by filters ozonemeters M-83/M-124. Throughout this period, there have been steady decreases in TOC in spring time. Early 1990s, the average TOC in September and October at Mirny decreased by 70–75 % of its average values for 1975–1980. The effect of the ozone hole and its intensity depend on ozone-depleting substance (ODS) levels, the dynamical processes and variations of temperature in the stratosphere. Considering the slow rate of decrease ODSs concentration, changes in size and depth of ozone hole have been mainly controlled by variations in temperature and dynamical processes. The destruction of the stratospheric circumpolar vortex early spring of 1988 was the reason that the spring negative anomaly of the TOC was not formed at all. A sharp increase of temperature in the stratosphere in the spring of 2002 was accompanied by an increase in the TOC. It led to reduction in the size of the “ozone hole” and even its dividing into two parts at the end of September. Since the early 2000s, there has been a tendency to return the TOC to the values observed in 1970s and to increase its interannual variability in comparison to 1990s.


2019 ◽  
Author(s):  
Yajuan Li ◽  
Martyn P. Chipperfield ◽  
Wuhu Feng ◽  
Sandip S. Dhomse ◽  
Richard J. Pope ◽  
...  

Abstract. We use the ozone dataset from the Copernicus Climate Change Service (C3S) during 1979–2017 to investigate the long-term variations of the total column ozone (TCO) and the relative total ozone low (TOL) over the Tibetan Plateau (TP) during different seasons. Based on various regression models, the wintertime TCO over the TP decreases overall during 1979–2017 with ongoing decreases since 1997. We perform multivariate regression analysis to quantify the influence of dynamical and chemical processes responsible for the long-term TCO variability over the TP. We use both piecewise linear trend (PWLT) and equivalent effective stratospheric chlorine loading (EESC)-based regression models that include explanatory variables such as the 11-year solar cycle, quasi-biennial oscillation (QBO) at 30 hPa and 10 hPa and the geopotential height (GH) at 150 hPa. The 150 hPa GH is found to be a major dynamical contributor to the total ozone variability (8 %) over the TP in wintertime. We also find strong correlation between TCO in DJF and the following JJA, indicating that negative/positive anomalies in the wintertime build up persist into summer. We also use the TOMCAT/SLIMCAT 3-D chemical transport model to investigate the contributions of different factors to the ozone variations over the TP. Using identical regression model on simulated TCO time series, we obtain consistent results with C3S-based data. We perform two sensitivity experiments with repeating dynamics of 2004 and 2008 to further study the role that the GH at 150 hPa plays in the ozone variations over the TP. The GH differences between the two years show an obvious, negative centre near 150 hPa over the TP in DJF. Composite analysis show that GH fluctuations associated with Inter Tropical Convergence Zone, ENSO events or Walker circulation play a key role in controlling TCO variability in the lower stratosphere.


2008 ◽  
Vol 8 (11) ◽  
pp. 2847-2857 ◽  
Author(s):  
J. W. Krzyścin ◽  
J. L. Borkowski

Abstract. The total ozone data over Europe are available for only few ground-based stations in the pre-satellite era disallowing examination of the spatial trend variability over the whole continent. A need of having gridded ozone data for a trend analysis and input to radiative transfer models stimulated a reconstruction of the daily ozone values since January 1950. Description of the reconstruction model and its validation were a subject of our previous paper. The data base used was built within the objectives of the COST action 726 "Long-term changes and climatology of UV radiation over Europe". Here we focus on trend analyses. The long-term variability of total ozone is discussed using results of a flexible trend model applied to the reconstructed total ozone data for the period 1950–2004. The trend pattern, which comprises both anthropogenic and "natural" component, is not a priori assumed but it comes from a smooth curve fit to the zonal monthly means and monthly grid values. The ozone long-term changes are calculated separately for cold (October–next year April) and warm (May–September) seasons. The confidence intervals for the estimated ozone changes are derived by the block bootstrapping. The statistically significant negative trends are found almost over the whole Europe only in the period 1985–1994. Negative trends up to −3% per decade appeared over small areas in earlier periods when the anthropogenic forcing on the ozone layer was weak . The statistically positive trends are found only during warm seasons 1995–2004 over Svalbard archipelago. The reduction of ozone level in 2004 relative to that before the satellite era is not dramatic, i.e., up to ~−5% and ~−3.5% in the cold and warm subperiod, respectively. Present ozone level is still depleted over many popular resorts in southern Europe and northern Africa. For high latitude regions the trend overturning could be inferred in last decade (1995–2004) as the ozone depleted areas are not found there in 2004 in spite of substantial ozone depletion in the period 1985–1994.


2013 ◽  
Vol 13 (11) ◽  
pp. 30407-30452 ◽  
Author(s):  
W. Chehade ◽  
J. P. Burrows ◽  
M. Weber

Abstract. The study presents a~long term statistical trend analysis of total ozone datasets obtained from various satellites. A multi-variate linear regression was applied to annual mean zonal mean data using various natural and anthropogenic explanatory variables that represent dynamical and chemical processes which modify global ozone distributions in a changing climate. The study investigated the magnitude and zonal distribution of the different atmospheric chemical and dynamical factors to long-term total ozone changes. The regression model included the equivalent effective stratospheric chlorine (EESC), the 11 yr solar cycle, the Quasi-Biennial Oscillation (QBO), stratospheric aerosol loading describing the effects from major volcanic eruptions, the El Niño/Southern Oscillation (ENSO), the Arctic and Antarctic Oscillation (AO/AAO), and accumulated eddy heat flux (EHF), the latter representing changes due to the Brewer–Dobson circulation. The total ozone column dataset used here comprises the SBUV/TOMS/OMI merged data (1979–2012) MOD V8.0, the SBUV/SBUV-2 merged V8.6 and the merged GOME/SCIAMACHY/GOME-2 (GSG) WFDOAS merged data (1995–2012). The trend analysis was performed for twenty six 5° wide latitude bands from 65° S to 65° N, the analysis explained most of the ozone variability. The results show that QBO dominates the ozone variability in the tropics (±7 DU) while at higher latitudes, the dynamical indices, AO/AAO and eddy heat flux, have substantial influence on total ozone variations by up to ±10 DU. Volcanic aerosols are only prominent during the eruption periods and these together with the ENSO signal are more evident in the Northern Hemisphere. The signature of the solar cycle is evident over all latitudes and contributes about 10 DU from solar maximum to solar minimum. EESC is found to be a main contributor to the long-term ozone decline and the trend changes after the end of 1990s. A positive significant trend in total ozone columns is found after 1997 (between 1 and 8.2 DU decade−1) which points at the slowing of ozone decline and the onset of ozone recovery. The EESC based trends are compared with the trends obtained from the statistical piecewise linear trend (PWLT or hockey stick) model with a turnaround in 1997 to examine the differences between both approaches. Similar and significant pre-turnaround trends are observed. On the other hand, our results do indicate that the positive PWLT turnaround trends are larger than indicated by the EESC trends, however, they agree within 2-sigma, thus demonstrating the success of the Montreal Protocol phasing out of the ozone depleting substances (ODS). A sensitivity study is carried out by comparing the regression results, using SBUV MOD 8.0 merged time series (1979–2012) and a merged dataset combining TOMS/SBUV (1979–June 1995) and GOME/SCIAMACHY/GOME-2 ("GSG") WFDOAS (Weighting Function DOAS) (July 1995–2012) as well as SBUV/SBUV-2 MOD 8.6 (1979–2012) in the regression analysis in order to investigate the uncertainty in the long-term trends due to different ozone datasets and data versions. Replacing the late SBUV merged data record with GSG data (unscaled and adjusted) leads to very similar results demonstrating the high consistency between satellite datasets. However, the comparison of the new SBUV merged Mod V8.6 with the V8.0 data showed somewhat smaller sensitivities with regard to several proxies, however, the EESC and PWLT trends are very similar. On the other hand, the new MOD 8.6 data in the PWLT model revealed a~reduced ODS related upward trend after 1997.


2008 ◽  
Vol 8 (23) ◽  
pp. 7033-7043 ◽  
Author(s):  
S. Simic ◽  
P. Weihs ◽  
A. Vacek ◽  
H. Kromp-Kolb ◽  
M. Fitzka

Abstract. The influence of variability of atmospheric parameters on short- and long-term changes of spectral UV irradiance measured at the Sonnblick observatory (47.03° N, 12.57° E, 3106 m) during the period from 1994 to 2006 is studied. Measurements were performed with the Brewer #093 single-monochromator spectrophotometer and with a Bentham DM 150 spectroradiometer (double-monochromator). The influence of ozone, albedo, snowline and clouds on UV variability is evaluated for each parameter separately using 10-year climatology. It is found that the effect of total ozone on short-term variability of UV irradiance at 305 nm can be more than 200% and on average more than 50%. Clouds can cause variability of 150% or more and on average 35%. Variability caused by albedo reaches a maximum of 32% in April (6% on average). In summer and autumn, total ozone and clouds strongly influence the variability of UV radiation, whereas in winter and spring ozone has the more pronounced effect. A decrease in snowline height from 3000 m to 800 m a.s.l. enhances the UV irradiance by a factor of 1.24 for clear sky conditions and by a factor of 1.7 for 8/8 cloud cover. Long-term trends are investigated for the time period from 1994 to 2006 based on clear-sky measurements, using the non-parametric Mann-Kendall trend test. Significant downward trends (99% confidence level) are found for solar zenith angle 55° at wavelengths from 305 nm to 324 nm and erythemally weighted irradiance according to CIE, which are caused by an increase in sunshine duration during periods of high total column ozone. Significant trends (90% confidence level) were also found for other combinations of wavelength and SZA.


Sign in / Sign up

Export Citation Format

Share Document