Boundary parameters method and its application to solving problems of the stability of cylindrical shells with different boundary conditions

1980 ◽  
Vol 16 (10) ◽  
pp. 859-863
Author(s):  
I. S. Malyutin
1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


2019 ◽  
Vol 141 ◽  
pp. 374-388 ◽  
Author(s):  
A. Evkin ◽  
V. Krasovsky ◽  
O. Lykhachova ◽  
V. Marchenko

2006 ◽  
Vol 306-308 ◽  
pp. 55-60
Author(s):  
I.S. Putra ◽  
T. Dirgantara ◽  
Firmansyah ◽  
M. Mora

In this paper, buckling analysis of cylindrical shells with a circumferential crack is presented. The analyses were performed both numerically using FEM and experimentally. The numerical analyses and experiments were conducted for several crack lengths and radius of curvature, and two different boundary conditions were applied, i.e. simply support and clamp in all sides. The results show the effect of the presence of crack to the critical buckling load of the shells. There are good agreements between experimental and numerical results.


1969 ◽  
Vol 36 (4) ◽  
pp. 784-790 ◽  
Author(s):  
J. W. Hutchinson ◽  
J. C. Frauenthal

The initial postbuckling behavior of axially stiffened cylindrical shells is studied with a view to ascertaining the extent to which various effects such as stringer eccentricity, load eccentricity, and barreling influence the imperfection-sensitivity of these structures to buckling. In most cases, when these effects result in an increase in the buckling load of the perfect structure, they increase its imperfection-sensitivity as well. In some instances, however, barreling can significantly raise the buckling load of the shell while reducing its imperfection-sensitivity. The analysis, which is based on Koiter’s general theory of postbuckling behavior and is made within the context of Ka´rma´n-Donnell-type theory, takes into account nonlinear prebuckling deformations and different boundary conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yaobing Zhao ◽  
Chaohui Huang

This paper is concerned with temperature effects on the modeling and vibration characteristics of Euler-Bernoulli beams with symmetric and nonsymmetric boundary conditions. It is assumed that in the considered model the temperature increases/decreases instantly, and the temperature variation is uniformly distributed along the length and the cross-section. By using the extended Hamilton’s principle, the mathematical model which takes into account thermal and mechanical loadings, represented by partial differential equations (PDEs), is established. The PDEs of the planar motion are discretized to a set of second-order ordinary differential equations by using the Galerkin method. As to three different boundary conditions, eigenvalue analyses are performed to obtain the close-form eigenvalue solutions. First four natural frequencies with thermal effects are investigated. By using the Lindstedt-Poincaré method and multiple scales method, the approximate solutions of the nonlinear free and forced vibrations (primary, super, and subharmonic resonances) are obtained. The influences of temperature variations on response amplitudes, the localisation of the resonance zones, and the stability of the steady-state solutions are investigated, through examining frequency response curves and excitation response curves. Numerical results show that response amplitudes, the number and the stability of nontrivial solutions, and the hardening-spring characteristics are all closely related to temperature changes. As to temperature effects on vibration behaviors of structures, different boundary conditions should be paid more attention.


Sign in / Sign up

Export Citation Format

Share Document