Theory of bound states of fermions in many-body systems

1983 ◽  
Vol 55 (3) ◽  
pp. 611-619 ◽  
Author(s):  
K. Kilimann ◽  
D. Kremp ◽  
G. R�pke
2018 ◽  
Vol 181 ◽  
pp. 01009
Author(s):  
Jaroslava Hrtankova ◽  
Jiří Mareš

We report on our recent self-consistent calculations of K− nuclear quasi-bound states using K− optical potentials derived from chirally motivated meson-baryon coupled channels models [1, 2]. The K− single-nucleon potentials were supplemented by a phenomenological K− multi-nucleon interaction term introduced to achieve good fits to K− atom data. We demonstrate a substantial impact of the K− multi-nucleon absorption on the widths of K− nuclear states. If such states ever exist in nuclear many-body systems, their widths are excessively large to allow observation.


2000 ◽  
Vol 14 (07) ◽  
pp. 721-727 ◽  
Author(s):  
SERGIO ALBEVERIO ◽  
LUDWIK DABROWSKI ◽  
SHAO-MING FEI

The integrability of one-dimensional quantum mechanical many-body problems with general contact interactions is extensively studied. It is shown that besides the pure (repulsive or attractive) δ-function interaction there is another singular point interactions which gives rise to a new one-parameter family of integrable quantum mechanical many-body systems. The bound states and scattering matrices are calculated for both bosonic and fermionic statistics.


1997 ◽  
Vol 12 (04) ◽  
pp. 743-756
Author(s):  
B. K. DAS

Following the trend of the possibilities of nonrelativistic bound states of the quasinuclear type in the systems of a baryon and an antibaryon, the present investigation studies over the same in many-body systems of baryons and antibaryons. The nonrelativistic quasinuclear features of the latter systems are observed to be discriminative to those of the former systems.


2008 ◽  
Vol 17 (supp01) ◽  
pp. 304-317
Author(s):  
Y. M. ZHAO

In this paper we review regularities of low-lying states for many-body systems, in particular, atomic nuclei, under random interactions. We shall discuss the famous problem of spin zero ground state dominance, positive parity dominance, collective motion, odd-even staggering, average energies, etc., in the presence of random interactions.


2021 ◽  
Vol 126 (11) ◽  
Author(s):  
Benjamin Geiger ◽  
Juan Diego Urbina ◽  
Klaus Richter
Keyword(s):  

2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Norifumi Matsumoto ◽  
Kohei Kawabata ◽  
Yuto Ashida ◽  
Shunsuke Furukawa ◽  
Masahito Ueda

2020 ◽  
Vol 6 (51) ◽  
pp. eabd4699
Author(s):  
Mingyuan He ◽  
Chenwei Lv ◽  
Hai-Qing Lin ◽  
Qi Zhou

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


Sign in / Sign up

Export Citation Format

Share Document