Supersymmetric Yang-Mills theory and the inverse scattering method

1983 ◽  
Vol 57 (3) ◽  
pp. 1269-1272 ◽  
Author(s):  
I. V. Volovich
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Changrim Ahn ◽  
Matthias Staudacher

Abstract We refine the notion of eclectic spin chains introduced in [1] by including a maximal number of deformation parameters. These models are integrable, nearest-neighbor n-state spin chains with exceedingly simple non-hermitian Hamiltonians. They turn out to be non-diagonalizable in the multiparticle sector (n > 2), where their “spectrum” consists of an intricate collection of Jordan blocks of arbitrary size and multiplicity. We show how and why the quantum inverse scattering method, sought to be universally applicable to integrable nearest-neighbor spin chains, essentially fails to reproduce the details of this spectrum. We then provide, for n=3, detailed evidence by a variety of analytical and numerical techniques that the spectrum is not “random”, but instead shows surprisingly subtle and regular patterns that moreover exhibit universality for generic deformation parameters. We also introduce a new model, the hypereclectic spin chain, where all parameters are zero except for one. Despite the extreme simplicity of its Hamiltonian, it still seems to reproduce the above “generic” spectra as a subset of an even more intricate overall spectrum. Our models are inspired by parts of the one-loop dilatation operator of a strongly twisted, double-scaled deformation of $$ \mathcal{N} $$ N = 4 Super Yang-Mills Theory.


1974 ◽  
Vol 52 (2) ◽  
pp. 397-414 ◽  
Author(s):  
M. Wadati ◽  
T. Kamijo

2001 ◽  
Vol 64 (3) ◽  
pp. 445-467
Author(s):  
Anthony J. Bracken ◽  
Xiang-Yu Ge ◽  
Mark D. Gould ◽  
Huan-Qiang Zhou

Three kinds of integrable Kondo impurity additions to one-dimensional q-deformed extended Hubbard models are studied by means of the boundary Z2-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realisations of the reflection equation algebras in an impurity Hilbert space. The models are solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.


1981 ◽  
Vol 59 (10) ◽  
pp. 1348-1353
Author(s):  
Sujeet K. Chaudhuri

An inverse scattering model, based on the time-domain concepts of electromagnetic theory is developed. Using the first five (zeroth to fourth) moment condition integrals, the Rayleigh coefficient and the next higher order nonzero coefficient of the power series expansion in k (wave number) of the object backscattering response are recovered. The Rayleigh coefficient and the other coefficient thus recovered are used (with the ellipsoidal assumption for the object shape) to determine the dimensions and orientation of the object.Some numerical results of the application of this coefficient recovery technique to conducting ellipsoidal scatterers are presented. The performance of the software system in the presence of normally distributed random noise is also studied.


Sign in / Sign up

Export Citation Format

Share Document