Laminar boundary layer on blunt bodies with account for vorticity of the external flow

1970 ◽  
Vol 1 (6) ◽  
pp. 80-83 ◽  
Author(s):  
I. N. Muizinov
1961 ◽  
Vol 28 (3) ◽  
pp. 339-346 ◽  
Author(s):  
R. J. Gribben

The equations for nonsteady, two-dimensional low-speed compressible flow in the laminar boundary layer are solved approximately by use of the Pohlhausen technique with the assumption of quartic profiles for the velocity and temperature. The external flow considered is of the form of a steady basic velocity with a superimposed small amplitude oscillation such as may arise, for example, when a sound wave is present in a uniform incident stream. The analysis is then applicable to the case of a hot cylinder fixed in such a stream. Terms of the order of the incident stream Mach number are neglected in the expressions for external flow quantities (whereas the low-speed boundary-layer equations involve errors of the order of only the square of this Mach number). Two special cases are worked out—the flow over a flat plate for which there is fair agreement with available exact calculations, and the flow over a circular cylinder.


1967 ◽  
Vol 18 (4) ◽  
pp. 332-353 ◽  
Author(s):  
Howard E. Bethel

SummaryThis paper presents a summary of a multi-moment method for solving the laminar boundary layer equations. Results obtained with the method tend to converge to the exact values as higher moments are used. Both similar and non-similar external flow fields are considered. The present results are compared with those obtained by another multi-moment method, a finite-difference method and a refined Pohlhausen-type method.


1972 ◽  
Vol 51 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bernard Roux

Supersonic laminar boundary-layer equations near the plane of symmetry of a cone at incidence are treated by the similarity method. Numerical integration of differential equations governing such a flow is performed, taking into consideration the temperature dependence of the Prandtl numberPrand viscosity μ throughout the boundary layer. On the leeward side, a detailed consideration of the solutions shows the existence of two solutions up to a critical incidence beyond which it appears that no solution may be found. Calculations carried out for a set of values of the external flow Mach number show up a significant effect of this parameter on the behaviour of the boundary layer.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 85-90
Author(s):  
P. A. Nelson ◽  
M. C. M. Wright ◽  
J.-L. Rioual

Sign in / Sign up

Export Citation Format

Share Document