Redox reactions of cobalt(III) complexes in aqueous organic mixtures effects: of single ion assumptions on initial state-transition state solvation analysis

1987 ◽  
Vol 12 (3) ◽  
pp. 238-241 ◽  
Author(s):  
John Burgess ◽  
Ol'ga Voll�rov� ◽  
J�n Benko
1983 ◽  
Vol 61 (7) ◽  
pp. 1361-1370 ◽  
Author(s):  
Michael J. Blandamer ◽  
John Burgess ◽  
Stephen J. Hamshere ◽  
Colin White ◽  
Robert I. Haines ◽  
...  

Rate constants are reported for hexachloroiridate(IV) oxidation of iodide in methanol–, ethanol–, t-butyl alcohol–, ethylene glycol–, glycerol–, acetone–, acetonitrile–, and dimethyl sulphoxide – water solvent mixtures, and for the hexachloroiridate(IV) oxidation of catechol in methanol–water mixtures. With the aid of ancillary solubility data and measurements, solvent effects on reactivity have been analysed into initial state and transition state components. In the latter, there are probably both electron transfer and diffusion contributions since it is not possible to identify uniquely the separate kinetic steps associated with the activation process. In these redox systems, however, transition state solvation changes dominate. This conclusion is compared with initial state – transition state effects in the reaction of catechol with hexahydroxoantimonic acid, in the bromate oxidation of bromide, the peroxodisulphate oxidation of iodide, and with patterns established earlier for substitution at inorganic centres. In view of some disagreements and uncertainties in the literature concerning the number of molecules of water of crystallisation in potassium hexachloroiridate(III) and hexachloroiridate(IV), this matter, of considerable importance to hexachloroiridate transfer parameter estimation, is briefly reviewed.


1976 ◽  
Vol 54 (24) ◽  
pp. 3944-3948 ◽  
Author(s):  
Wiendelt Drenth ◽  
Michael Cocivera

Rates were determined for the solvolysis of isopropyl bromide in ethanol–water mixtures (20 to 80% by volume of ethanol) at 50 and 75 °C and the corresponding activation parameters calculated. From the partial vapor pressure of isopropyl bromide over the various solutions at 50 and 75 °C, the variations in its initial state thermodynamic parameters were calculated. Thus, the variation in the activation parameters with solvent composition could be analyzed in terms of initial and transition state contributions. The initial state variation dominates according to a unimolecular as well as to a bimolecular treatment of data.


1993 ◽  
Vol 18 (1) ◽  
pp. 110-112 ◽  
Author(s):  
Olga A. ◽  
J�n Benko ◽  
Ol'ga Voll�rov� ◽  
Vladislav Holba

1983 ◽  
Vol 8 (3) ◽  
pp. 148-152 ◽  
Author(s):  
Michael J. Blandamer ◽  
John Burgess ◽  
Timothy Digman ◽  
Philip P. Duce ◽  
John P. McCann ◽  
...  

1972 ◽  
Vol 50 (7) ◽  
pp. 982-985 ◽  
Author(s):  
K. T. Leffek ◽  
A. F. Matheson

Secondary kinetic deuterium isotope effects are presented for the reaction of methyl-d3 iodide and pyridine in four different solvents. Calculations on mass and moment of inertia change with deuteration in the initial state and an assumed tetrahedral transition state, together with internal rotational effects, are used to rationalize the inverse isotope effects. It is concluded from the variation of the isotopic rate ratio, that the transition state structure varies with solvent.


Sign in / Sign up

Export Citation Format

Share Document