Nitrogen transformations near urea in soil: Effects of nitrification inhibition, nitrifier activity and liming

1988 ◽  
Vol 18 (3) ◽  
pp. 201-212 ◽  
Author(s):  
Yadvinder-Singh ◽  
E. G. Beauchamp
2020 ◽  
Vol 151 ◽  
pp. 108058
Author(s):  
Eduardo Vázquez ◽  
Nikola Teutscherova ◽  
Michael Dannenmann ◽  
Paul Töchterle ◽  
Klaus Butterbach-Bahl ◽  
...  

2007 ◽  
Author(s):  
Theresa Jain ◽  
Molly Juillerat ◽  
Jonathan Sandquist ◽  
Mike Ford ◽  
Brad Sauer ◽  
...  
Keyword(s):  

1993 ◽  
Vol 22 (3) ◽  
pp. 528-536 ◽  
Author(s):  
Virginie Bergeron ◽  
Jean Simon Blais ◽  
Ivor Wharf ◽  
William D. Marshall

2021 ◽  
Vol 223 ◽  
pp. 112606
Author(s):  
Dengxiao Zhang ◽  
Guanghui Du ◽  
Wenjing Zhang ◽  
Ya Gao ◽  
Hongbin Jie ◽  
...  

1988 ◽  
Vol 68 (3) ◽  
pp. 569-576 ◽  
Author(s):  
YADVINDER SINGH ◽  
E. G. BEAUCHAMP

Two laboratory incubation experiments were conducted to determine the effect of initial soil water potential on the transformation of urea in large granules to nitrite and nitrate. In the first experiment two soils varying in initial soil water potentials (− 70 and − 140 kPa) were incubated with 2 g urea granules with and without a nitrification inhibitor (dicyandiamide) at 15 °C for 35 d. Only a trace of [Formula: see text] accumulated in a Brookston clay (pH 6.0) during the transformation of urea in 2 g granules. Accumulation of [Formula: see text] was also small (4–6 μg N g−1) in Conestogo silt loam (pH 7.6). Incorporation of dicyandiamide (DCD) into the urea granule at 50 g kg−1 urea significantly reduced the accumulation of [Formula: see text] in this soil. The relative rate of nitrification in the absence of DCD at −140 kPa water potential was 63.5% of that at −70 kPa (average of two soils). DCD reduced the nitrification of urea in 2 g granules by 85% during the 35-d period. In the second experiment a uniform layer of 2 g urea was placed in the center of 20-cm-long cores of Conestogo silt loam with three initial water potentials (−35, −60 and −120 kPa) and the soil was incubated at 15 °C for 45 d. The rate of urea hydrolysis was lowest at −120 kPa and greatest at −35 kPa. Soil pH in the vicinity of the urea layer increased from 7.6 to 9.1 and [Formula: see text] concentration was greater than 3000 μg g−1 soil. There were no significant differences in pH or [Formula: see text] concentration with the three soil water potential treatments at the 10th day of the incubation period. But, in the latter part of the incubation period, pH and [Formula: see text] concentration decreased with increasing soil water potential due to a higher rate of nitrification. Diffusion of various N species including [Formula: see text] was probably greater with the highest water potential treatment. Only small quantities of [Formula: see text] accumulated during nitrification of urea – N. Nitrification of urea increased with increasing water potential. After 35 d of incubation, 19.3, 15.4 and 8.9% of the applied urea had apparently nitrified at −35, −60 and −120 kPa, respectively. Nitrifier activity was completely inhibited in the 0- to 2-cm zone near the urea layer for 35 days. Nitrifier activity increased from an initial level of 8.5 to 73 μg [Formula: see text] in the 3- to 7-cm zone over the 35-d period. Nitrifier activity also increased with increasing soil water potential. Key words: Urea transformation, nitrification, water potential, large granules, nitrifier activity, [Formula: see text] production


2021 ◽  
Vol 13 (4) ◽  
pp. 2018
Author(s):  
Tai McClellan Maaz ◽  
William C. Hockaday ◽  
Jonathan L. Deenik

Biochar has important biogeochemical functions in soil—first as a means to sequester carbon, and second as a soil conditioner to potentially enhance soil quality and fertility. Volatile matter (VM) content is a property of biochar that describes its degree of thermal alteration, which can have a direct influence on carbon and nitrogen dynamics in soil. In this study, we characterized the VM in biochars derived from two locally sourced feedstocks (corncob and kiawe wood) and evaluated the relationship of VM content to nitrogen transformations and culturable fungal biomass. Using 13C nuclear magnetic resonance (NMR) spectroscopy, we found that the VM content of biochar primarily consisted of alkyl (5.1–10.1%), oxygen-substituted alkyl (2.2–6.7%), and phenolic carbon (9.4–11.6%). In a series of laboratory incubations, we demonstrated that corncob biochars with high VM (23%) content provide a source of bioavailable carbon that appeared to support enhanced viable, culturable fungi (up to 8 fold increase) and cause nitrogen immobilization in the short-term. Corncob biochar with bioavailable VM was nitrogen-limited, and the addition of nitrogen fertilizer resulted in a four-fold increase in total hydrolytic enzyme activity and the abundance of culturable fungal colonies. In contrast, kiawe biochar with an equivalent VM content differed substantially in its composition and effect on these same biological parameters. Therefore, the rapid measurement of VM content is too coarse to differentiate chemical composition and to predict the behavior of biochars across feedstocks and production methods.


Sign in / Sign up

Export Citation Format

Share Document